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ABSTRACT

- Sig-nal cancellation is an effect which occurs in conventional adIaptive arrays.

This effect manifests itself as a loss of information in the desired signal. -1i this

rep~ort. we will' present-two new adaptive array techniques to combat signal canl-

cellation. These two new techniques are known as the frequency-hop spreadl

slpecIriii approachI andl t he pa rallel spatijal processing approach.

The frequiency-hop spreaid spectrum technique makes use of freque(ncy-

(liserilnhllal l11oll l~ olhll ja 1111r interference. I'sing the (lesirml signwil,

fre(1lency-h p nia Ilire. WC-( (-ll remiove the signal from the adapjtat ion pro cess ill :1

mnrler thait ('lifliltes signal cancellation. When the slpread-spect rumn techniquev

;11)(I the sptildsri~ tin iherett in adlapt ive arrays areI combinedll((, a syvst cli

resIlit, wit I an interferelice reject ion caa~lt~gre ater than eit her of ille 1%%(

a h )lle. vl raIcrect i% e hiines antd simunlat ions, v-imu-~prsn d

The weconid t echlIi ii akes iise of spatial smioot hing alnd paraillel st riiet iro,

to elim~inat e signal cancellation. We will show that this new scheme results in a

* ima \ iiui-likel lhoo )(vst iimatfc of the dIesiredl signal in a spatial averagingo SenISe.

* 1111ida t i( ) reults are presented to Illustrate Ilte effectiveness of this propo sedl

liii i11(lle forl((i atn in a ieltin
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I. INTRODUCTION

Adaptive arrays have been the subject of extensive investigation for the past

two decades. They can reduce the receiver's vulnerability to interference when

used in radar, sonar, seismic, and communication systems. The principal

motivation for this widespread interest in adaptive arrays is their ability to sense

and to automatically suppress the interference while simultaneously enhancing

desired signal reception without prior knowledge of the signal/interference

environment. Perhaps the easiest way to visualize the operation of an adaptive

array is to considor the response in terms of the array beam sensitivity pattern.

Interference suppression is obtained by appropriately steering a beam pattern null

and reducing sidelobe levels in the directions of interference sources, while desired

signal reception is maintained by preserving proper mainlobe features. An

adaptive array system therefore relies heavily on spatial characteristics to

improve the output signal-to-noise ratio (SNR). Since it is possible to form very

deep nulls over a certain frequency band, very strong interference suppression can

be achieved. This exceptional interference suppression capability is a principal

advantage of adaptive arrays over other techniques.

In the early 1960s the key capability of adaptive interference nulling was p

recognized and developed by Howells [1.1-1.2]. Subsequently, Applebaum [1.3]

established the control law associated with the Iowells adaptive hulling scheme

by analvzing an algorithm that maximizes a generalized SNTTZ. Concurrentl:,

\%i'lr,% et. a. [1.11 applid the technique of self-training or self-optimizinlg
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control to adaptive arrays. This self-optimizing control work established the

least mean square error (LNIS) algorithm that is based on the method of steepest

descent. The Applebaum and the Widrow algorithm are very similar, and both

converge toward the optimum Wiener solution. Developments in seismic and

acoustic array work commenced at about the same time, so papers describing

applications of seismic arrays and hydrophone arrays appeared during the late

1960s. Capon et.al. [1.5] and Lacoss [1.61 addressed adaptive signal processing in

seismic arrays. while Shor [1.7] worked with hydrophone arrays.

The original Howells-Applebaum sidelobe-canceller exploited the differing

signal-to-jammer ratios in a directive primary antenna and an omni-directional

auxiliary antenna to avoid seriously attenuating desired radar signals. Widrow

introduced a pilot signal to control beamformer response in specified look

directions. Griffiths [1.8] devised a different soft-constraint technique that

involved statistical characterization of the desired signals. Frost 11.9-1.10

developed a constrained least-mean-square (LMS) algorithm that assured exact

conformance with some prespecified look-direction response. More recently,

Griffiths and Jim [1.11-1.12] contributed a structure called the "generalized

sidelobe canceller," which provided an alternative method of realizing hard

constraints. In the past few years Zahm and Gabriel [1.13-1.161 devlop,,d a

generalization of the soft-constraint metho{. Chestek [1.171 brought together

much of the earlier work on soft-constraint methods by combining soft linear

*- constraints with a mean-square-error criterion.

.-\lrthigh a number of various processing techniques for adaptive arrays hav,

. . . . .. .: : --.. . . .. . . ._
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been described, these techniques can be simply categorized as implementing

either hard or soft constraints. The Frost beamformer is an example of a hard-

constraint adaptive array, whereas the adaptive sidelobe canceller is a soft-

constraint adaptive array.

1.1 Background

Many adaptive array issues arise in applications of direction finding and

adaptive beamforming. The preservation of desired signal from the adaptive

arrays is one of the issues of great concern. Research over the last fe' years

have been mainly directed toward achieving satisfactory SNR performance and

yielding highly refined adaptive systems that can overcome most forms of clutter

and jamming.

In any adaptive array applications, assumptions are always made for the

desired signal and the interference. For example, the strength of the desired

signal is small compared to the interference, or the signal is statistically

uncorrelated with the interference. In fact, most algorithms will not work if the

desired signal is correlated with interference. This limitation is a severe obstacle

for adaptive arrays in many applications where multi-path propagations or smart

jamming problems exist. Frost pointed out in his paper [1.101 that a linearly

constrained adaptive array may cancel out portions of the desired signal with

jammers present in spite of the constraints. This cancellation of signal occurs

Sh,'. tihe, ja rn f rs are correlated with the desired signal.
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Recently. XWidrow eta!. [18.1]have round that a sinusoidal jammer2

sitting in the frequency band or the desired signal can easily destroy the

~quality" or the output response in any form or adaptive array . Since then.,
Widrow et.al. have explored and studied the so called "signal cancellation effect"

- ~~~In adapl~t ive a rrays. a nd proposedl Duva l' beamfornier and the spat ial (lithiier

-. :Ii g nt Ii to e mhat the signal ca ncellat ion phenomena. M ore recently, shall

bre~ikir the rohereto liml (,aIneelItlonls.

Ihe putrpo'.e of thIiis report is to sttid~y two new approaches for av( )( r

'.igial inte l it 111if(LlfJtve arrays. The first ap~proach isbasedl on frequency-

hop prvjHid Irminimi~~te The (,econdi one Is based onl spatiail proceinlg wit I

~iJ 1.2 Outline of' Chapters

( luruptfr 11 lli~rt ratws signiul cmneellation mid providIes insight from vairII)lIS

leI~u't ()f :InI)Iiv arriys. With that Iackground, we thent lprolmos two)

(lilbiut 1() v;ci i'.t liuiuto ,Igulll caiiieeklloi. Thley a. the f ueuvl

0 ~III :111d I\ f~uj~w i I'li fIh~ u~-lo .l!:l ;(t u ppnoaIclu.(Int

( lm~ptir Ml lirI~ gives a brief In trod~luict ion to frequency- hop spread sp~ectrum i

:111( uu nl r\ i' I li'le ~ i; lInekgruuuru Ilmout III(- \%ih \,hum 1h~tiu

0e ezl clql, m,
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then developed for frequency-hop adaptive arrays. Simulation results are

presented to verify the effectiveness of these algorithms in preventing signal

cancellation.

It will be seen in Chapter II that frequency-hop notch filters are always

required in frequency-hop adaptive arrays. Chapter IV then studies several types

of frequency-hop notch filters. Transient performance and convergence are

investigated. Comparisons of bandwidth and frequency response fe- 1ilters

are made to provide general insight into their use in frequen ,-nop adaptivO

arrays.

Chapter V' gives an introductory background and reviews previous work in

the field of spatial processing. Then, a spatial processing algorithm with parallel

array structures is developed. This algorithm results in a maximum likelihood

estimate of desired signal in a spatial averaging sense. Analysis and simulation

results that show the performance of the algorithm are provided. 1

'I

I

S.
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11. SIGNAL CANCELLATION IN ADAPTIVE ARRAYS

This chapter first illustrates the problem of signal cancellation in adaptive

arrays, then provides insight into the nature of this effect, and finally discusses

general approaches for eliminating signal cancellation. We will focus on the case

of narrow-band signals.

The chapter consists of four sections: Section 2.1 demonstrates signal

cancellation in adaptive arrays. Section 2.2 examines how this effect occurs in

the Frost beamformer. sometimes called a hard-constraint adaptive array. In

Section 2.3, the same effect is investigated for the adaptive sidelobe canceller,

which is a soft-constraint adaptive array. Based on the insight gained in last two

sections, Section 2.4 discusses and proposes cures for preventing signal

cancellation in adaptive arrays.

2.1 Introduction

Conventional adaptive arrays are known to be very effective in suppressing

directional jammers. This can be achieved by forming spatial nulls in the

dir,-ct ions of th -se jammers, provided that the desired signal and janiners a rt,

uncorrelated. The nulls are created by weighting the receive'd jammer

componets in a manner that the jammers but not desired signal at, rin,''ll it

the array out put This optimal v% eight ing is frequently referred to as the Weiner

>,l~ ~i, l Iti~r(,,,,-r m A,%tn r~ x h, , ,rra~ p:,r ial )r 1,,t:il 4., ,,l~ ti f ,

th.. ,1,ir,, l -i;rial ,1nl,,n,,it, at lh, .krri u tput. "FT'l , phit , .,nnII.

0
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signal cancellation, and it may seriously degrade the performance of adaptive p

arrays. Several researchers 11.10, 2.1] have observed and reported such signal

cancellation effects in adaptive array systems.
p

Recently, Widrow et.al. 11.18-1.19] have demonstrated signal cancellation in

the Frost beamformer. The Frost beamformer uses a constrained LMS algorithmn

to minimize its output power. In this demonstration, a unit-gain coristraint. is

imposed in the look direction of the Frost beamformer. Suppose that a desired

broadband signal is arriving from the look direction. This desired signal should

appear at the array output after going through a constrained unit gain. Now if a

sinusoidal jammer arrives off the look direction, this jamming sinusoid should be

rejected by the adaptive array. When both the jammer and the desired signal

are present, however, minimizing the total output power will cause the sinusoidal

jammer to be modulated so that it cancels some components of the desired signal

close to the jammer frequency [2.21. Figure 2.1 shows the spectra of both a

desired broadband signal and the received array output. The jammer is a

sinusoid, and its spectrum is a line sitting at a normalized frequency of 0.25.

Notice that the signal components around the jammer's frequency in Figure 2.1

have been cancelled at the array output. If the jammers consist of a sum of

sinusoids at spaced frequencies within the passband of the desired signal. the
I

output spectrum will be notched at each of the jammer frequencies as shovn in

Figure 2.2. This effect results in a loss of information from the desired signal.

and could be t rouhlesome in anti-j'anmitng or spread spectrum onnunic:irns.

If a f:;,t aLlapt:tion rate is employ'd, the jann 'r rnolulition is m ,r

P
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effective and complete desired signal cancellation can occur. In such situations,

signal cancellation can be induced even with a broadband jammer. Widrow

recognized that this signal cancellation can be related to the adaptive noise

cancelling problems [2.3]. In adaptive noise cancelling, an adaptive noise

canceller is able to create a null at the frequency of a sinusoidal reference signal.

By virtue of this nulling ability, the adaptive noise canceller performs as a linear,

time-invariant, notch filter. The step size It of the LNLS adaptive algorithm

controls the width of the notch. The larger the step size, the wider the notch

[2.4]. This is similar to the problem of wide-band signal cancellation. Figure 2.3

compares the output spectra showing different cases of wide-band signal

cancellation for different values of It. Both spectra have same frequency null

centered at the jammer's frequency, but the larger the value of pa, the wider the

bandwidth of the cancellation notch. The step size p obviously plays a similar

role in both adaptive noise cancelling and signal cancellation. That is, the faster

the adaptation rate, the wider the cancellation width, since faster adaptation

allows for higher frequency modulation of the jammer.

If the desired signal is a narrow-band signal sitting at the same frequency as

the jammer, the output of the adaptive array may fall to zero, as shown in

Figure 2.A. The convergent beam pattern could thus form a null in a false

direction as shown in Figure 2.5. In this situation, the adaptive array completely

fails to perform as a receiving array.

As another example, it has been found in [2.21 that signal cancellation can

occur e rln if the jammer and d&,ired qignal are sinusoids with slightly different

S.
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frequencies. The adaptive weights are modulated during the adaptation process.

This weight performance is far from that of the Weiner solution. This signal

cancellation due to the weight modulation is described by Widrow et.al. [1.181,

and is also referred to as the non-Weiner signal cancellation.

Another form of signal cancellation takes place in adaptive arrays that have

"soft" omnidirectional or look-direction constraints. The Ilowells-Applebau n

sidelobe canceller is an example of such an array [2.1[. An adaptive array

algorithm which uses soft ,-onstraints may null the desired zignal if its po-ver is

much greater than the power of jammers. This is because nulling the high-po\%or

desired signal minimizes output power more than nulling the low-power jammers.

This effect is referred to as Weiner signal cancellation, since it is a property of

the converged Weiner solution. Notice that non-Weiner signal cancellation

occurs in any form of adaptive arrays, but Weiner signal cancellation occurs only

in "soft-constraint" adaptive arrays.

* *
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2.2 Signal Cancellation in Frost Adaptive Beamformers

In this section, we investigate signal cancellation in the Frost adaptive

beamformer. The Frost beamformer minimizes its total output power by

employing a constrained least-mean-square criterion. Since its structure can

easily impose a linear constraint in the look direction, sometimes it is called a

hard-constraint adaptive array. A typical constraint is one that forces the

beamformer to form a unit gain and zero phase over a certain frequency band in

the look direction.
5

The most important point regarding signal cancellation is the quality of the

adaptive array output. To demonstrate how this effect can occur, consider a

simple two-element Frost beamformer as shown in Fig. 2.6. Suppose a sinusoidal

desired signal is arriving from the look direction, and a jammer at the same

frequency as the desired signal and with a fixed phase shift is arriving from the

off-look direction. Let the desired signal S and the jammer J be the following,

S = Ae i w'

J = Beit+i6 (2.1)

where A and B are the corresponding amplitude of the signal and the jammer, o

is a ronstant phase difference between S and J, and u, is the angular frequency.

In the sinusoidal case, sometimes a phasor diagram may be useful in explanation,

and we will use it to explain the false beamforming later.

'1

I
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In Figure 2.3, the receiving element #1 receives both the desired signal and

,jammer as

AC, Ae'w' + Be"w''iO (2.2)

and the element #2 receives the same signal plus the delayed jammer as

X - A e j + Bejwt + j~ 0 jw . (2.3)

4 N% here

= dsinO
C

d=the inter-element distance

=the speed of propagation

0 = the jammer's incident angle from b)roadside

Denote the weight vector and the received signal. vector as

AC X A 1 x,2 ]T .(2.4)

The beamformer output is thus given by

y - WTX = XT tV

The dapiveweihtsarecomplex, and the complex algorithm for linearly

constrained adaptive beamformers [2.51 is used. For a detailed analysis, pleasep

refer to Appendix A. The constraint in the look direction is set to unity grain and

zero p aefrom zero frequenry to half the samnpling rate. Thus the Frost

algorit limi can be cx pretsedl as the following,



Min 1y1 2
F w

subj ect to W,1 + IV,, 1 (2.6)

or is equivalently given by

Min I V1X1 + IV42X2

subject to WV1 ±TV., 1 .(2.7)

Susi1!utin N~.X. and It', into (2.7) yields an unconstrained min iizationi

prob)Vni a , folloN S.

* Nu~Mn Iel' -4 + Be' J1- IV,,+ ~ew 28
IV.,

Solving (2.8). one easily rinds that the optimal weight IV iS

1 -J? B(I - eiw-)(2)

Note that the optimal solution results in a zero output wvhen the adaptive

processor reaches steady state. i.e.

0x

Of course this is undesirable. Ideally thme output should be the desired signal

only, with no added coherent jammer. By this criterion, the optimal solutionl

WVp shouldI be

2 op (2.10)

Comnparin-; (2.0) and] (2.10). we may see that thore are two wvays to force the

to h. )pti[m-ll olutioii in) coliorQot Jammning environinont. tIr firs;t wne



is to set .4 zero, or to eliminate the desired signal in the adaptive processor. The p

second one is to make .4 << B, which means the signal power should be much

smaller thn the jammer power.

In his master-slave beamformer, Duvall [2.2] applied the first idea to remove

desired signal from adaptation. Since no desired signal is involved due to inter-

element subtraction in Duvall's master beamforrner, the influence over weight p

settings will be dominated by the jammers. The adaptive weights therefore reach

an optimal sclution which cancels the jammers only. I
Now consider the case when A << B, which means a very strong jamnier is

present, then Wt * 2 W. Note that the output y equals to W;*TX. This

still results in a zero output, even though the weight is very close to the optimal

solution. This is better explained from the perspective of covariance space. Shan

[2.G has shown that in a coherent signaling environment the sample covariance

matrix has a zero eigenvalue. Thus minimization with respect to the weights will

steer the weight vector to align with the eigenvector corresponding to this zero

eigenvalue. The output of the beamformer hence falls down to zero.

To understand the false nulling phenomenon of the beam pattern, it is

helpful to consider a phasor diagr:nm as shown in Figure 2.7. In this phasor

diagram. OQ and OR are the jammer components received by the elennt !#1I

and #2. respctively. The angle _QOR represents the phase delay irA between

the janinier components at element #1 and #2. P) is the desired signal

r,'i, byI v b t)rh ,eements. .An ido:l adaptiv" beanf,)rr ,r f,,l! lrm 3 inull in

a1 lir.",1in >1i,1 that the phase dlay is '1 .
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Let the length represent the amplitude. For a far-field planewave jammer,

each element receives equal jammer amplitude, namely I OQ = I OR 1. The

received amplitude may vary from element to element for a near-field jammer.

Without loss of generality, suppose both the jammer and the desired signal have

equal power intensity. In other words, I PO I = I 0Q9I = I OR I . For the

coherent jamming situation, both the jammer and the desired signal have the

same frequency w. The relative phase difference ( between signal and jammer is

a fixed constant. In the phasor diagram, this means 0OQ and 01-' are rotating

about point 0 with angular speed w, and P-0 is rotating about point P with the

same angular speed. The relative phase difference 6 between signal and jammer

should not be confused with the phase delay w1 between the jammer
CD

components at elements #1 and #2.

One can easily see that PQ is the phasor superposition of PO and OQ,

whereas PR is the phasor superposition of P- and 07?. In other words, I PQ I

actually represents X, as received at element #1, and I P_7 represents X, as

received at element #2. Since the signal and the jammer have the same

frequency w, both PQ and PR are then rotating about point P with the same

angular speed w. Besides, the phase delay _QPR between PQ arid PT has been

fixed, and it is easy to verify that LQPR = wA/2 by geometrical identities.

This means that the phase delay between antenna element #1 and antenna

element #2 is changed to another fixed value, which is w._ '2 instead of wA.

Note that this is virtually equivalent to the following scenario: A near-field

janifr, v.irh no desired signal arrives in a directon for which the inter-el,,newr

I



phase delay is uA/2. For a near-field jammer, the array elements should receive

jammer components with significant attenuation. Since it "looks" like a near-

field jammer, the adaptive beamformer, subject to the minimization algorithm,

will always adapt to minimize the beamformer output power. Therefore, forming

a null in a wrong direction with phase delay wA/2, rather than wA, will still

achieve the power minimization. This accounts for the false nulling of the

adaptive array. Again, note that the desired signal has been cancelled, and hence

can not be recovered at the array output.

Simulations with the Frost beamformer in Fig. 2.6 were conducted to verify

the above argument. The inter-element distance was half a wavelength. A

coherent jammer as well as a desired signal are received by the adaptive

beamformer. Both have equal power intensity 1. The desired signal is from

broadside and the jammer is in a direction 45 ' from broadside. The output of

the beamformer is shown in Figure 2.4. The resultant beam pattern in Figure 2.5

has a null in a direction 20.7 from the broadside. By the above false nulling

argument, one could verify that

w sin 20.7 w sin 4(2.11)

Hence, the adaptive array finds that forming a null at 20.7 ' from broadside Can

minimize array output more than forming a null at 45' from broadside. This

fals, willing vi not easily seen when the .ignal pour ind the jammer power are

not of the same order of magnitude, especially' when the jammer power is much
.- otrnr than the signal poN\er. In such a situation, It ) i, very small

c.,mpared to 00 ,r OR and the fi\ed plhaf,' dliv LOI'k bet ween X1 ald

- -7
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. X, will be very close to wA. The resultant null of the converged beam pattern

will be very close to the jammer's bearing. Even though the beam pattern looks

correct in this case, the beamformer output still falls to zero which leads to

*difficulty in recovering the desired signal.

0 '
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2.3 Signal Cancellation in Adaptive Sidelobe Cancellers

In last section, we demonstrated that the desired signal was cancelled by the

jammers in the "hard-constraint" adaptive arrays. In this section, we will show

that the same cancellation can occur in a "soft-constraint" adaptive array. The

adaptive sidelobe canceller is an example of the "soft-constraint" adaptive

arrays. To show how signal cancellation can occur, consider a simple two-

element adaptive sidelobe canceller as shown in Figure 2.8. Both receiving

elements are assumed omni-directional. The adaptive weight is complex and is

updated by the complex L.IS algorithm [2.71. Again the signal and the jammer

are coherent as in (2.1). The receiving elements #1 and #2 receive -, and X" as

in (2.2) and (2.3), respectively. The array output y is given by

=, - Wy.,

Mathematically, the adaptive algorithm can be expressed as follows,

Min Iy 12
w

This appears as an unconstrained minimization problem, and the minimum

solution for the complex weight is

I _n .4 + _Be
A + Be -  A

A + (eJA) (212)
.4 + Be .(12

Again, this minimal solution results in a zero array output, when the adaptive

p roe-,)r reaches stealv state. The desired signal is totally Il(mnelled (,tl I he

ja nuner, and the adap'jive array fails to ,rf, r i as a receiving array.

6P
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Usually, the adaptive sidelobe canceller is very effective when jamming

power is much higher than signal power. The optimal solution should be able to

suppress the jammer only and is given by

Wop t  .
- " (2.13)

Comparing (2.12) and (2.13), it shows that the weight can be the optimal solution

if A is zero. This implies that the removal of desired signal from adaptation

process is a key point to combat signal cancellation in adaptive arrays.

01
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2.4 Cures for Signal Cancellation

In this section we first discuss the nature of signal cancellation, and then

propose several cures to eliminate such a negative effect in adaptive arrays. ".j

From Section 2.2 and 2.3, one can easily see that signal cancellation arises

because of the following: First, the power minimization algorithm is used.

Second, non-zero correlation between signal and jammer exists. Unfortunately.

these scenarios happen all the time. Any adaptive array using the mean square

error (.ISE) minimization criteria exhibits such "signal cancellation" phenomena.
I

Furthermore. Duvall showed in his thesis that signal cancellation can occur even

when the jammer is uncorrelated with the desired signal, and the weights are also

modulated during the adaptation process. More details about the weight-

modulation effect in the hard-constraint adaptive array are described in Duvall

[..21.

As we have seen, there are several symptoms present if signal cancellation

occurs during the adaptation process. First of all, the adaptive weights are

modulated. Secondly, the output spectrum is distorted. Thirdly, the beam

pattern may show false nulling. The key point concerns the interaction of the

jammer with the signal during the adaptation process. Any properly designed

preprocess that can separate the desired signal from the jammer in SOTmle manner

will essentially eliminate signal cancellation. By such a preprocess, the adaptive

array would be able to null the jammer only, and to recover the desired signal as

sell. The preprocess has to utilize the a priori information either from the signal

or from the j:imrner.

4I
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If the direction of the desired signal is known, Duvall has developed a

master-slave beamformer to combat signal cancellation in his thesis [2.2]. The

idea of Duvall's beamformer is to preprocess the desired signal prior to the

adaptive process. In his method, inter-element subtraction is employed to

remove the desired signal before the adaptive processor. By taking the signal out

of the adaptation process, the signal/jammer interaction in the adaptive process

is essentially eliminated. Notice that the inter-element subtraction can be

applied only when identical antenna elements are used.

Another idea is to preprocess the jammers so as to break up the

signal/jammer correlation. To do so, spatial discrimination can be applied to

such preprocessing. Widrow has suggested a spatial dither method, which is also

called the "3/4in-plywood" method, to break up the signal/jammer correlation

11.18].

So far, all the methods proposed by Widrow and Duvall are suggested for

the hard-constraint adaptive arrays. In such an adaptive array, the signal's

direction is assumed known. Since signal cancellation also exists in soft-

4 constraint adaptive arrays, more powerful methods to eliminate this effect should

be devised. The remainder of this section suggests other approaches to eliminate

signal cancellation in adaptive arrays. Two approaches are proposed.

The first approach is based on frequency-hop spread spectrum techniPIes.

Chapter 111 and Chapter [V investigate and discuss the effectiveness of such an

approach. In this approach. the desired signal is assumed to be frque,.v-

hopping. The only information about the lesired signal kllo%in to the adzlitive
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arrays is the pseudo-random (PN) code. The term "pseudo-random" is used

specifically to mean random in appearance but reproducible by deterministic

means. This approach is very suitable for soft-constraint adaptive arrays, or for

applications where the signal's direction is unknown.

Another approach is based on parallel spatial processing techniques. This

approach is investigated in Chapter V. In this part, we assume the direction of

the desired signal is known. The idea is to apply spatial smoothing in a direction

orthogonal to the look direction, so that any off-look jammer will be spatially

smoothed out.

0

*- [..
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II. FREQUENCY-HOP ADAPTIVE ARRAYS

In Chapter II we demonstrated the phenomenon of signal cancellation, which

exists in most adaptive arrays. We briefly mentioned two new cures for signal

cancellation: one is the frequency-hop approach; the other is the spatial

smoothing approach. Chapter III will investigate the first approach.

The chapter is organized in seven sections: Section 3.1 gives a brief

introduction to frequency-hop spread-spectrum techniques and their integration

with adaptive arrays. In Section 3.2, we describe an overall system structure for

frequency-hop adaptive arrays. From Section 3.3 to Section 3.6. we present four

different adaptive array schemes to combat signal cancellation, when the desired

signal is known to be a frequency-hop spread-spectrum signal. In Section 3.3, the

first scheme is called frequency-hop adaptation algorithm, which can be used in

adaptive sidelobe cancellers. In Section 3.4, we discuss the filtered-X filtered-(

algorithm, which is also used in adaptive sidelobe cancellers. In Section 3.5, we

discuss the master-slave adaptive sidelobe canceller. Section 3.6 presents a

master-slave Frost adaptive beamformer when the signal's direction is known.

Finally. Section 3.7 describes coherent detection, and compares the results of

these new schemies with the results+ of exi.,ting techniqlies.

.I
"6
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3.1 Introduction

Spread-spectrum techniques are often used to neutralize large number of

interferences and jammers from interfering with signal transmission. This

spread-spectrum processing [3.1-3.31 encodes the signals in a manner which makes

them resistant to unauthorized detection, demodulation, and interference. It is

also well known that adaptive arrays are able to suppress directional jammers by 4

forming spatial nulls in the direction of jammers. Adaptive arrays utilize

spatial-domain information to discriminate between the desired signal and

jammers. Spread-spectrum techniques utilize frequency-domain information to

discriminate between the desired signal and jammers. In many anti-jamming

applications, a combination of spread-spectrum processing and adaptive array

processing, rather than either separately, constitutes the most robust and

effective anti-jamming protection. In such situations, if spread-spectrum

techniques effectively interface with adaptive array systems, they represent a

noteworthy advantage.

Integration of spread-spectrum techniques with adaptive arrays has been

reported by Compton [3.4], and Winter [3.5]. Digital communications are al%.vay,

employed in such a system. Compton applied the direct sequence sprad-

spectrum methods to Widrow's LMIS adaptive arrays. The same experiment>

using direct sequence techniques are described by Winter, except that four plhases

are used t, increase the data transinissicn rate.

3. 1. 1 trcquenrcy-l11,p "preaid-Spectrui Techniques

I .
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One of the common spread-spectrum techniques utilizes frequency hopping.

With the frequency-hop spread spectrum technique, the desired signal can be

binary-phase-shift keyed (BPSK) or quadrature-phase-shift keyed (QPSK). The

center frequency of the desired signal is hopping corresponding to a previously

arranged pseudo-random (PN) code. For an authorized receiver, the signal can be

easily recovered by tuning in accord with the known pseudo-random frequency

schedule. To unauthorized receivers, the emanating signals looks like white

noise. Only one frequency is used at a time. The resultant signal spectrum is

spread over a large bandwidth, a bandwidth that is typically ten to several

hundred times larger than the signal information bandwidth [3.6-3.71.

The fact that frequency hopping does not provide instantaneous coverage of

the broad signal band leads to the consideration of the rate at which the hops

occur. Clearly. the faster the hopping, the more nearly the frequency-hop

approximates true spectrum spreading. Two basic characterizations of frequency

hopping are fast frequency hop and slow frequency hop. These are distinguished

from one another by the amount. of time spent at each discrete frequency before

4 hopping to the next. Sometimes the number of bits per hop is used to

distinguish slow frequency hop from fast frequency hop. The two tN'p,,s of

frj,,uncy hopping are briefly discussed below.

\When slow frequency hop is employed, the carrier frequency remains

,. mt.ini ,,r rnc ,eriods far in excess of th'v time span of the data bits. This

tl'lll[I, ill i;> : ( ia, bits to tbe tran-smitted at each frequency, ind] the

I n :, t,r :I r ',iv(,r ,,,uiimnt is simpler and less ,xpen iv,, th:in

.-
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that for a faster frequency hop. The disadvantage of slow frequency hop is that p

an enemy can implement smart jammers that defeat the anti-jamming protection

in many instances. This can be accomplished by providing the jammer with a

p
search receiver that scans the signal frequency band and locates the transmission;

then the jammer's power can be concentrated at the frequency where the signal is

being transmitted. If the jammer can adapt quickly enough, it may be able to

fol!ow the Slow frequency hop.

For fast frequency hop, as the name implies, it involves vry r:lp il ret ti rn ig_

of the signal and very short dwell time at each frequency. Generally. a fast hop0)

is applied to defeat the smart jammer's attempt to measure signal frequency and

tune the interference to the portion of the band. To defeat this tactic, the signal

Smust be hopped to a new frequency before the jammer can complete its

measurement and effect interference. Smart jammers, therefore, are forced to

jam only a fraction of the total hopped band, since they only need to interfere

with enough of the hops to decrease the SNR.

It is well known that signal cancellation effects exist in most of the

conventional forms of adaptive array. This effect occurs when a jammer is sitt ing

inside the signal's frequency :)and. This motivates us to use the frequency-hop

spread-spectrum technique as an approach to the elimination of si.gnal

cancellation in adaptive arrays. In addition, combining the spatial-discrimination

capability of adaptive arrays with frequency-hop techniques yicldk a system

*l x~ho se interference rejection c:npability is far greator thani that of oilthr o)f tle

t%%,, rf,hniqll. 1 u 1,s d Ilone.
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3.2 Overall System Structure

In this section we describe an overall system structure for frequency-hop

adaptive arrays to provide a background of the whole system concept.

Figure 3.1 shows the overall system diagram. This system consists of an

array of antenna elements, an adaptive array processor, a set of local oscillators,

and a match filter. The match filter system consists of an "integrate and dump"

and a decision maker. or a threshold detector. The antenna elements are omni-

directional. T, e alaptive array processor is used to suppress the jainmer and to

receive the desired signal as well. Following the processor output, there is a set

of local oscillators which mixes and decodes the signal from the array output.

After mixing and decoding. the match filter is used to recover the signal's

information.

Several assumptions are made for the frequency-hop adaptive array system.

First of all, the desired signal is assumed to be a frequency-hopping signal.

Second, digital data transmission is employed. Third, fast frequency hop is used.

By this fast frequency hop, several frequency hops are possible during the time

span of one data bit. The signal's direction may or may not be known.

The system can be used in many anti-jamming applications when the desirvd

signal is knowvn as a frequency-hop spread-pectrum signal. This will not work

w hen signal cancellation occurs in adaptive array processors .N ew schemes for

adaptive arrays are pt' e letd iI thI fol,,. ing s,ctions

0
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3.3 Frequency-Hop Adaptation Algorithm

In this section, we propose a new adaptive array technique to prevent signal

cancellation in frequency-hopped communication systems. This technique,

termed the "frequency-hop adaptation algorithm," is applicable to both soft and

hard-constraint adaptive arrays. The new algorithm utilizes a special filter

structure which is called the frequency domain, complex, LMS adaptive filtf'r.

.3.3.1 Freiuency Domnain L.IS Adaplice Filters

A conventional L.IS adaptive filter is shown in Figure 3.2. The input gos

through the tapped-delay line (TDL). and then is multiplied by the adjustable

weights and summed to form the output. The weights adapt to match the

desired response in a least-mean-square sense. Basically, this is a tine-arying

finite-impulse-response (FIR) filter. The frequency response of the filter depends

on those weights of the tapped-delay line. Each weight has effectiveness over the

entire frequency band. This filter structure, however, is not the most appropriate

when only certain portion of the frequency response need to adapt.

Various structures and algorithms have been proposed for frequency-domain

adaptive filters [3.8-3.11]. Among these filters, a structure suggested by Naravan

[3.11] is very compatible with frequency-hop spread spectrum techniqiis. 5

Horowitz and Senne [3.12] have applied frequency-domain filtering to adaptive

array i)r :.ing*

Figlire 3. -hro\%s the rli: r:it , N : r:i'an's tr,.,iiJenc'v-,toi ain :ildaptiv, lilter.

"Ih,. :iJfrive. \,'i~lits arf- ro lf,,. mid arc qip±tt,,d by the C coiltlhi I,

I
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algorithm [2.71. The input feeds through the tapped-delay line and undergoes the

discrete Fourier transformation (DFT). The complex output bins of the DFT are

weighted by adaptive weights and summed to give the filter output.

Comparing Figure 3.3 with Figure 3.2, it is very clear that the only

difference between frequency-domain and conventional adaptive filters is the

discrete Fourier transform in between the tapped-delay line and the adaptive

weights. It is well known that the DFT can be interpreted as a bank of

uniformly spaced band-pass filters. This implies that the weights in the

frequency-domain LIS adaptive filter are adapting at the output of a bank of

band-pass filters. Each individual weight now has the ability to control the gain

and phase of the frequency response within a narrow range of its assigned

frequency.

3.3.2 Frequency-Hop Adaptation Algorithm

With the background of frequency-domain adaptive filtering, we present an

adaptive array scheme as shown in Figure 3.4. The antenna elements are omrni-

directional. Following the antenna elements is a frequency-domain adaptive

filter. The system is operating with frequency-hopped BPSK signals in the

presence of jammers. The desired signal is hopping from one frequency bin to

another. Notice that the adaptive array, scheme in Figure 3.4 will perform as a

two, -element I Io'ells-Applebaum adaptive sidelobe canceller if the weights are

adapted by the conventional LMS algorithm. This is true even th ough a

frvjii:ncv-,1nain LN..S adiptive filter is used. \\Viner and non-\',lner signal

-7: .-.-" . - . : . "- " " "-
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cancellation still occur in such a Howells-Applebaum sidelobe canceller, and the

weights are modulated during the adaptation process.

With the structure of the frequency-domain LIMS adaptive filter, we are able

to use a so called frequency hop adaptation algorithm. In this algorithm, the idea

of eliminating signal cancellation is to stop the weights from modulation. Now

the frequency-hop adaptation algorithm is given as follows: All frequency bins

except the one which contains the current signal are adapted. Meanwhile. it

"freezes' the weight which contains the current signal while adapting the rest of

weights to minimize the array output power. This contrasts with existing

techniques which adapt all complex weights corresponding to all the frequency

bins.

Mathematically, the weights of frequency-hop adaptation algorithm can be

described as

W(k+ 1) = W(k) + 2op.(k).A(k)'X(k) , (3.1)

where A (k) is a time-varying diagonal matrix and can be expressed as follows,

1 0

0 1
A(k.) =

Note that all but one of the diagonal entries of .I(k) are unity. The position of

the zero diagonal entry is hopping according to the signal's PN frequency code.

In the algorithm, only the selected complex weight corresponding to the

Curront m-tt aneous frequency is temporarily frozen, and the rest of the

,,,rl,, \,,i'ght are adapted in a omnventinwal wayv to mirimi, the nois. to 11ui

.. . .• .-.. . . ...- :
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jammers in the sense of mean square error. Since the desired signal always 5

appears through a frozen (not adapting at that moment) weight, the weight

modulation effect vill never act on the signal. Consequently, degrees of freedom

in the weights are never used to cancel the desired signals. Thus signal

cancellation can be prevented. And since the adaptive process adapts all I
frequency bins except one at a time, inhibiting adaptation at the current

frequency bin will not significantly slow the rate of convergence.

It remains to demonstrate the effectiveness in suppressing the jammer. This

is easily understood from the point of view that the desired signal is transparent

to the frequency-hop adaptation algorithm. No matter whether the desired signal

is present or not, all the weights on the average wrill still adapt to minimize the

output power. In the situation when the jammer is present only. it works just as

a conventional adaptive sidelobe canceller.

We leave the simulations to Section 3.5 and 3.6, since many of them are

similar in terms of sensitivity in beam pattern and frequency response.

3.3.3 Discussion and Conclusions

The frequency-hop technique is very compatible with Narayen's frequency

domain LMIS algorithm when adapted in accord with "frequency-hop adaptation •

algmorithm" as given in (3.1). Basically, this algorithm is a filtered-.V L\IS

al~nriiitn. The algorithm makes use of the frequency-domain adjustabilitv to

fr#,eze th, :adaptie, we ight which .corresponds to the desir,d signal frequ,.ncy I)iI.

ky fr',,zig the, sl.td "Aeiht. tho i)eodilati(on e"l c.t on Ihc signal is Stoppe, I

L "
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and signal cancellation thus can be eliminated.

There are several points that should be taken into account. First of all, the

array output is directly used as the feed-back error in the adaptation process. 'i

Minimizing the output power is the performance criterion. This however

introduces a performance limitation associated with signal power. When a high-

power signal is present, this signal will feed back to the adaptive processor, and

cause a high misadjustment which corresponds to noisy weights. This results in a

noisy recovered signal.

S
Second. the DFT always introduces inherent leakage effects, i.e. , the energy

in the main band of the frequency response "leaks" into the sidebands, obscuring

and distorting other sidebands responses. Besides, the frequency-band resolution

of the DFT is limited by the length of the window. Normally, in frequency hop

environments, thousands of frequency bands are required. This implies that the

number of taps in the tapped delay line, and hence the number point of DFT,

should be at least around a few thousand for a good frequency resolution. If so.

the DFT processor will be expensive and complicated. Also the transient

response due to the associated long tapped delay line will become very critical

when a high hopping rate for the signal is desired. Chapter [' will relate more

details about leakage effect, frequency resolution, and transient performance.
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3.4 Filtered-X Filtered-E LMS Algorithm

In this section, we present a second adaptive array technique, termed the

filtered-X filtered-( LMS algorithm, to combat signal cancellation in soft-

constraint adaptive arrays. This algorithm shows that signal power will have no

effect on the weight setting. The new algorithm shares common merits with the

so called "instrumental variable" (1V) method in the field of recursive

identification [3.131. In this scheme we also introduce a filter called the

frequency-hop notch filter. Ideally, this filter should have a flat fr,,qiienv

response and a linear phase except that it can form notches at the specific

frequencies in accord with a known frequency code.

3.4.1 Structure and Algorithm

Figure 3.5 shows a modified Howells-Applebaum sidelobe canceller for use

with the "filtered-V, filtered-c LMS algorithm." Again the antenna elements are

onini-directional, and will receive the signal as well as the jammer. The desired

signal is a frequency-hopping signal. Only one frequency is used at a time, and

the signal direction may or may not be known.

The key idea embodied in this modified sidelobe canceller is the removal of

the de,ir,'d signa from the adaptation feedback (tlie error). Since the desired

,1;L:1 1, h,, in lig from bin to bin, a signal-free error can be forrin d by filterng

th, :arr: . ,iitput thruugh a frequency-hop notch filter. This signal-free error is

Sfin ,l,.,[ :1 : r iwasurv of th' perfrman(-e (crileri~n. Due to 11w remnval ,,f

l- -L
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effect on the optimal solution of the weights. Direct application of the L.IS

algorithm using this filtered error to update the weight vector may result in

instability [3.141. To avoid such instability, the X vector is filtered in the same

manner as the error, and this provides the same phase delay needed by the LNIS

algorithm.

As the usual way with a Howells-Applebaum sidelobe canceller, the jammer

and the signal components from element #2 will go through the tapped-delay

line as x ell as the frequency-hop notch tilter. The error is also obtained by

notch-filtering the array output. The weights of the tapped-delay line ar,

adapted by a modified LMS algorithm, which is referred as the "filtered-X,

filtered-( LIS algorithm" A conventional LMS algorithm generates a filter

output as the inner product of the current weight vector and the current signal

vector, and then updates the next adaptive weight vector by using the current

error and the current signal vector. For the "filtered-X, filtered-( L.IXS

algorithm," the adaptive filter output is the same inner product of the current

eweight vector and the current signal vector, except that the next weight vector is

*. updated by the filtered error and the filtered signal vector.

Mathematically, the conventional L.MS algorithm updates the weights vector

6 as folloxvs,

.(k, 1} = W(k) + 2.p ((k)-X(k)

The fiIt,,r, .d- . tiltered-( LNlS algorithm updates the weights vector accordli n. t0

V(:-.- 1) 1: 2 ",t '(k ).\'(k )
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where A\(k) represents the filtered X vector and c(k) represents the filtered

error. The output is the same inner product of the weight vector 1,° and the

unfiltered X vector, i.e.,

=y(k) IV(k)\(k)

This modified algorithm was first presented by Widrow et.al. [3.15-3.16], and is

some % hat similar to the 'instrumental variable" ( 1,) m,,thod i:.I 8J. The 1V

method decorrelates an estimate of .X vector and the system noise so as to

over.:'ome the convergence problems in recursive identifications. The detailed
I

block diagram of the "filtered-X. filtered-E LNIS algorithm" is shown in Figure

3.6.

We need to demonstrate that this modified algorithm wvill still be capable of

removing jammers from the array output. Assume that the spectrum of the

jammer is constant relative to the time-variation of the frequency-hop desired

signal. Suppose a given frequency bin of the "unfiltered" error contains the

jammer plus an occasional burst of desired signal. The same given frequency bin

of the 'filtered" error thus will contain jammer alone when the frequency-hop _

notch filter is tuned elsewhere and will be zero during the time when the notch

filt r is tuned to that bin. On the average, however, the jammer will be present
I

in that fr,,quencv bin and wkill make itself apparent to the adaptive process in

1hi-h th,, zoal i to r,, ',i, the power of the filtred error.

The fretu,-ncN-hop notch filters are synchronously notching at the signal's

, l .::,- 5 , . , y ,f ll ,'ring r ia t ruI t in il n abiliv in the

[ \ < i privo, a]:,rt hm, . :ame iPl.ring s tIn r iuir,l t,) : i' :iv iril

- . -. - --L '--- . .-- -" -- '- - - • --- ". . - - - '
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to stablize the LMS algorithm. More details about the structure of frequency-

hop notch filters are left for Chapter I"V.

Noticc that the desired signal components are all notched out from the error
I

and the element #2 by the frequency-hop notch filters, and the jammers and

white input noise will control those adaptive weights of the tapped delay line.

This implies that signal power would have no effect on the adaptive weights.

The signal and jammer will not interact with each other during the adaptation

process. This prevents signal cancellation phenomena of both Wiener and non-

Wiener types in conventional Howells-Applebaum sidelobe cancellers. From the

aspect of the sensitivity pattern, the adaptive array should create nulls in the

directions of jammers. The beam pattern corresponding to the Wiener solution

would be the same, with and without the signal.

3.. .2 Discuassion and Conclusions

In frequency-hop spread spectrum systems, normally high-Q and frequency-

tunable filters are used to reduce jamming effects outside the desired signal's

frequency band. This kind of filtering, however, would not reduce the jammer

power level inside the signal's frequency band. Adaptive arrays can attenuate

directional jammers, but they can also cause signal cancellation problens. The

modified scheme in, this section is able to reduce the jammer in the signal band

by furniin g a deep null in the direction of the janminer. In addition, this scheine

alko helps in proventing signal cancellation.

I3) -pirii ir. i 'e lesired >i-n-al frn tlie i j:m ner during the ad:l,ra:t*,,)

. ? ..- . . I
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process, the existing signal cancellation problems with both the Weiner and non-

Wiener solutions in a Howells-Applebaum sidelobe cancelling array can ue

essentially eliminated.

There are two remarks about the filter-X, filtered-c LMS algorithm. First of

all, the desired signal is removed from the vector X and the error, hence the

weights are dominated by jammers and white noises only. Second. the same

notch filtering structures are used to provide phase delay ballance when

employing this special algorithm.

0

0

0

0
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3.5 Master-Slave Adaptive Sidelobe Canceller

In this section, we introduce another adaptive array technique that utilizes

conventional L\IS algorithm and frequency-hop nature of the desired signal to

prevent signal cancellation. We call this scheme the master-slave adaptive

sidelobe canceller. The basic idea is to remove the desired signal from the inputs

of adaptive processor (known as the master processor). This is accomplished by

prefiltering the signal at each array element with a frequency-hop notch filter.

notching in accord with the signal's frequency code. Because the notch filter is

continuously hopping from bin to bin, jammers will pass through to the master

processor inputs and the adaptive algorithm will attempt to eliminate them. The

set of weights derived from this master processor are then copied into a slave

processor. The slave processor containing the desired signal as well as the

jammers will recover the desired signal while simultaneously suppressing the

jammers. Provided the prefiltering is done identically on each element of the

array, nulls formed in the slave processor will be in the same direction as nulls

formed in the master processor.

3.5. 1 Structure and Algorithm

Figure 3.7 shows a block diagram of the master-slave adaptive sidulhbe

canceller. This scheme consists of two separate proessors: a master processor

op oratig fm pr,,filtred array signals and a ,lave processor operatinig on the

,nriginal array signals. The two frequency-hlop notch filters have the same

-trrut~tr, i l :ir' h, pp g in a m:nn,,r 1h:i r lt,, the leir, >ignal vhilv

. . . i _ ' :- _ • --. ', : '. - , , ,' - - ,- , '= "- : -"
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passing out-of-band signals. This filtering operation removes the desired signal

from the adaptive master processor inputs. The output of the master processor

will contain no desired signal and is used only in the adaptation feedback. The

weights derived from the master processor are then copied into the slave

processor. The inputs of the slave processor come directly from the array

elements and are used to generate the useful array output.

Because the desired signal has been removed from the master processor, it

can no longer affect the adaptive weights. Non-Weiner signal cancellation results

from an interaction between the desired signal and jammers during the adaptive

process. Obviously removal of the desired signal from the adaptive algorithm will

eliminate non-\Veiner signal cancellation. Weiner signal cancellation results from

the inability of the adaptive algorithm to distinguish between the desired signal

and the jammer. A high-power desired signal would be nulled as if it were a

jammer. A Howells-Applebaum sidelobe canceller will experience this type of

signal cancellation. By removing the desired signal from the inputs to the

adaptive process, both Weiner and non-Weiner signal cancellation can be

eliminated.

It remains to demonstrate that the presence of frequency-hop notch

* prefiltering will not degrade the ability of the adaptive array to null jamwrs.

This is most easily demonstrated by visualizing an equivalent jamming scenario.

.\ume fur the moment that the only signals received by the adaptive arra

ori-inat, frnmi either the _irminers or the , irqI sinal. That is. a-s uim tl ire !S

n', : I,ir rh,,rtw i al ioi.. Tht th,, ,4 't (4 th, fr,', u,'nv-h nith iitr, -:n

0. ) - • 7 -- - . .-. '



. .P _ ., . , %. • • _• , " -. b ". - ' " J ' :" o . " ' . 7. *\*- " -. 
" 

, " - - . - - . - -.

- 54 -

be "pushed" into the source of both the jammers and the desired signal to

generate the equivalent signal environment shown in Figure 3.8. The notch

filters have been moved from the processor inputs to each directional signal

source. Since the frequency notch hops from bin to bin in accord with the

hopping of the desired signal, the desired signal is eliminated from the conceptual

signal environment as indicated by the large X. The equivalent jammer is

generated by filtering the original jammer through the frequency-hop notch filter

as shown. Since the adaptive weights in the master processor are affected only

by this equivalent jammer, conceptually the master processor will see no desired

signal present. By this means it aids all Hlowvells-Applebaum sidelobe cancellers,

since the criterion of power minimization applies only to the jammers but not to

the desired signals.

A typical frequency-hop spread spectrum signal will hop among 100

different frequency bins spending approximately 10 itsec (the chip duration) in

each bin [3.61. On the average the frequency-hop signal will spent only 1% of its

time in any given frequency bin. Provided the time constant of the adaptive

algorithm is chosen to be at least several times the chip duration, (for example,

1001isec), the average effect of the notch filter is to slightly reduce the apparent

power of the jamner. If the time constant of the adaptive algorithn is

comparable to or smaller than the chip duration, then the apparent jammer wil

be nonst atinarv and the adaptive weights %ill try and track the time varying

m sitoa ion.

l~i li, 8.9 .-h,\ an imprmvel me laods for gerlerat ing thle overall svst,,m

0 - - -- ' o,
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output. Instead of taking the output of the slave processor alone, the difference

between the output of the slave and the master is taken. Generating the array

output in this manner helps reduce the out-of-band jammer components and is

essentially equivalent to filtering the slave processor output with a bandpass filter

centeied at tLe current frequency-hop bin, as shown in Figure 3.10. This is best

explained by noting that the output of master processor contains a residual

amount of 'he jainnmer component outside the signal band while the output of

slave prflcs( ,r contains alnio t the same amount of out-of-band jammer residual

in addition to the desired signal. By subtracting the two outputs. the out-of-

band jammers in the master processor output cancels the out-of-band jammers in

the slave processor output. effectiv,ly creating a bandpass filter on the output of

the slave processor, as illustrated in Figure 3.10.

3.5.2 Simulation Results

Simulations of the two-element adaptive array shown in Figure 3.7 and

Figure 3.9 have been conducted. Assume that a BPSK frequency-hop signal is

emanating from one direction, and a broadband jammer from another direction.

A broadband jammer was generated by passing uncorrelated noise through a

Butterworth barndpass filter. The noth IiIers are tuned to the center frequ, en .

of the desired signal.

F)r he first experiment, the po%. or 4J the jammner %%as set to 100 and t ie

power of the desir;,d >i nal was set to I .\l,-. the desired signal was frozen- to

one, frequln,'y. that is it was net allto,,l I) h ). Pwerspectra at variousst1 ,,'
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of the processor are shown in Figure 3.11. The top plot shows the spectrum of

the signal received by one array element. Without spatial processing, this input

signal is dominated by the jammer and the sinusoidal signal can not be seen.

The middle plot shows the spectrum at the output of the master processor after

convergence and the bottom plot shows the spectrum of the output of the slave

processor. Notice that the sinusoidal desired signal is well above the background

intrfre.,nce level in the slav- pro(essor output, whereas this desired signal has

been notcheot Imt of the master output. III addition, the interfer,,ice has ben

greatly reduced by the 10-to-I scale difference of the input signal and master

output spectral plots.

Figure 3.1:2 shows the time domain waveforms at the slave processor output

and the output after differencing the master and slave processor output. For this

experiment the desired signal was not frozen and was giving rise to the three

distinct frequency hops shown. At the slave processor output, the periodic nature

of the desired signal can been seen but it appear to be a rather noisy sinusoid.

After subtraction however, almost all of the out-of-band jammer has been

removed and the sinusoidal desired signal appears very clean.

Apparently, identical structures are required for those two froqu,?ncy-hop

notch filters to preserve the relative phase. The nulls formed in rma ter proccss)r*

will be the same as nulls formed in slave processor.

->>ur,' for the moment that the frequency-hop notch filters are 1,, pre-ent

in Fig 3r .7. In this 'ase, if the desire, I igna I as of :I 1,uwer much gr,:at r ih:,I

rh Irt ,r rh, j:ir nrnr >tlrcs. the a Li't i,, o :irr:uv 1',iu. frm : null in h, ir,1 iM
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of the desired signal. However, with the notch prefilters present, the desired

signal is removed from the input to the adaptive master processor and therefore

the power of the desired signal can not affect the weights. To illustrate this, two

experiments were conducted each with identical parameters except for the signal

power. In one experiment the signal power was set to 1 while the other the

signal power was set to 40. Again, the desired signal was frozen to one

frequency. After convergence, the array beam patterns were evaluated at tile

fr', n 'y ()1 the desired signal and plotted in Figure 3.13. As anticipated. the

two sensitivity patterns are identical.

To illustrate the wideband performance of the adaptive array, Figure 3.1.1

shows the array's frequency response in the direction of both the signal and the

jammer. The horizontal axis is normalized frequency. The desired signal was

hopping among 128 different frequency bins and covered a normalized frequency

range between 0. 15 and 0.35. Notice that the response in the signal direction is

fairly flat over this bandwidth and the response in the jammer direction is

virtually zero over the jammer bandwidth.

0 For the above experiment, the time constant of the adaptive algorithm was

set to several times the bit duration. Thus the adaptive weights converged to a

constant value. Had the time constant been set to a value less than the bit

duration, the weights would have a ttenipted to track the time-varying jammer

sp truin .. At :nv n ivPn instant, th, fr,,,Iuencv r, > ns ,e in the jammer direction

o Would hav, bheen virtually zeroi over the handl\ ilt h of t" h j:irnr except p,,ssiblv

in tl, ,urrnt fr'i.ni v-l , .i i:o ' llt- i,,l.l ,,,, i h' u. t le nit.h filters

0
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remove any jammer component in the current frequency-hop bin making th,,m

invisible to the master adaptive processor. However, since the bandwidth of the

notch filters is very narrow compared to the bandwidth of the jammer and the

array's frequency response prefers to be continuous, the response in the

frequency-hop bin should be about the same as the response immediate outside

the bin. Thus a wideband null is formed in the direction of the jammer over the

entire jammer bandtwidth.

3.5.3 Discussion and Conclu.sions p

The master-slave adaptive sidelobe canceller can eliminate signal/jammer

interactions by using frequency-hop notching. Conventional LNIS algorithmn is

used in this scheme. The improved scheme results in better frequency filtering.

It can also be decomposed into two filtering stages; the first spatial filtering, the

second frequency filtering. This scheme still results in a soft-constraint adaptive

array. The gain in the signal's direction is determined by the jamming situation.

6J
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3.6 Master-Slave Frost Adaptive Beamformer

In this section we propose a master-slave Frost adaptive beamfornver to

prevent signal cancellation in adaptive arrays. The key idea is to remove the

desired signal from the master adaptive beamformer by frequency-hop notch

filtering. This scheme basically is similar to the scheme in previous section,

except that it can retain an assigned gain or a linear constraint in the look

direction.

Figure 3.15 illustrates a b,1)'k diauirn of the master-slave Frost adaptivO

boamformer. There are two identical Frost beamformers used in this schenio.

One is the master, and the other is the slave. The master beamformer copies the

weights into the slave one. The Frost beamformer imposes a linear constraint in

the desired look direction. The array elements received the jammer as well as the

desired signal. A bank of frequency-hop notch filters are used to notch out the

desired signal from the receiving array elements.

Since the jammers are transparent to the frequency-hop notch filters, they

will pass through to the master beamformer inputs and this master beamformer

will attempt to eliminate the jammers. By copying the weights from the master

into the slave beamformer, this slave beamformer containing signal and jammers

will recover the signal while simultaneously suppressing the jammers. The look-

direction constraints are sustained as usual, and the jainmers are hlled. By

removing the desired signal from the master Learnfriner. signal ca ncellatlii can

be elimin atd.

Sir"1 lilt ns fr a t-s 'it ui>t er--lave j:r,.t ad:ipi , i lwane ifrrnwr aro,

.0" - + . % . .-. +, . ..
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LC conducted to verify its effectiveness. In this experiment, a unit gain with zero

phase constraint is imposed in the signal direction. Figure 3.16 shows a beam

pattern of this modified beamformer as the adaptive process converges. A

wideband null in the direction of the jammer is about 20 db below the sensitivity

in the signal direction. Notice that the sensitivity in the signal direction is

constrained to 0 db.

Figlr, 3.17 lhows the frequency responses in the directions of both the

signal nn the j:m,,nwr. .gain note that the frequency response in the signal

direction is tine to unityv gain with zero phase, and the frequency response

in the jarmmier dir ction forms a flat null over the bandwidth of the jammer.

Figure 3.1 compnres both the time domain waveforms of the slave output

and the svstem out[ut when the signal is hopping. The system output results in

a cleaner waveform than the output of slave beamformer. The system output is

generated by subtracting the master output from slave output, and this

subtraction results in a band-pass filtering as was seen before. The idea is

illustrated for the Frost beamformer in Figure 3.19.

0
0,

. ..0_ .. '
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FREQUENCY RESPONSE

AT SIGNAL'S BEARING

.. 20

0.8E0
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Figure 3.17. The frequency responses of the master-slave Frost
* bearnfrorner in both the directions of signal and jammer.
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3.7 Coherent Detection Results

So far, we have suggested several effective methods for adaptive arrays to

combat signal cancellation. The comparisons and discussions are focused on the

output of adaptive arrays. In this section, we first discuss a correlation technique

to detect transmitted data from the output of frequency-hop adaptive arrays, and

then compare the results for frequency-hop adaptive arrays and conventional

A, irox i>IN .hon in Figure 3.1. the array output is mixed or multiplied

by a sinti>id ;,nerited from the local oscillator. This local oscillator is operating

at the knowvn hopping frequencies and mixed with proper phase shifts for

different frequenci,,s. Then it performs an "integrate and dump' operation

within a certain time intervil, the chip period T. This correlation technique is

refered to as coherent detection or matched filtering. The decision maker

following the integrate-and-dump consists of a set of thresholds to detect if the

binary data is either + I or -1, or 0 when no signal is transmitted.

The follouing is a brief analysis of the coherent detection. Consider a

frequency-hop digital cornmunication system, where the signal frequency at any

given tim, is asstimed known at the receiving site, and only one bit of

inlf,,rmation is rir ars itted at each frequency at a time. The system operatcs

Nith ,on>t an nv,'lp,. binary phase-shift-keed signals of the form

sit ) = .A cos[ t + ,(t
I I F
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A = a constant amplitude

w= hopping frequency known by the pseudo-random code generator

f0 for binary + I

~(t) = j r for binary -1

By using the coherent detection method, we are able to recover tile origInl

transmitted data. Now let the array output be

YMt =SMt + n(t)

where

* f a cos --t + o(lt + ,jij with presence of sig~n al

0 wvith absense of signial

iL)=the phase shift of adaptive filter

E n (t) 0

* the output of thle integrate-and-dumip is described as

t+ T
Z(t) f y (t )cos [ ' + i,('jdt

= f aCOS O(l) It + f a cos 2 .t + o(t + 2qj(-) (it
t t 2

t+ T

-+ f ntO .

6 he ;oo i ril tho tird terms \%III 1 r out Ic) 1) 1crm.th ut llti



or

a4 if 0(t) =0

Z(t) =k if O(t)

ifno Sig7nal

I_,

11

Figure :3.20 hostwo out put plots of the integyrate- and-dunip. The top plo-t

corresponds to a conventional adaptie array. whereas the bottom 1)1ut

*corresponds to one of the suggested frequency-hop adaptive arrays, An en:oldd

frequency-hop signal is used in the presence of a Jamming situation. The

transmitted dlata sequence is 1, -1, 1, 1, -1, -1, then nothing. It is clear from the

2I

£ top plot that signal cancellation appears in the conventional adaptive array, and

that sometimes this cancellation effect can be severe enough to cause false data

decoding. For the suggested adaptive arrays, the integrate-and-dump integrates

very clearly and steadily. This demonstrates the effectiveness of frequency-hop

adaptive arrays.

§ -,- -t - - z
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IV. FREQUENCY HOP NOTCH FILTERS

In Chapter III we suggested several effective schemes for adaptive arrays to

eliminate signal cancellation. The frequency-hop notch filters are always required

in these schemes. In Chapter I', we present two methods to implement a

frequency-hop notch filter. One is based on the structure of DFT, and the other

is ba ,ed on the structure of adaptive noise cancelling.

This oiapter has foilr sections. Section 4.1 gives a brief introduction of
I

notch filt ers. Section .12 discusses the DFT freyiency-hop notch filter. Section

41.3 discusses the adaptive frequency-hop notch filter. The properties of

fretuency-hop notch filters such as transient response, band width, and spectral

shaping are investigated and compared in Section 4.-I.

4.1 Introduction

There are a variety of notch filters available for frequency-hop spread

spectrum svstor -,s. Most of these notch filters fall into three categories: the all-

zero type, the pole-zero type , and the all-pole type. An all-pole filter always

requiirs in Jinfinite orl,,r realization to create a stop band or a notch in the

frr, ,ien,'y r,,p .) ii Thiis, it is not practical to implement an all-l, le notch filter

for fr,, , , o -hip s 1,,in>. F",r this re: I,,, lo, :ill-z,ro mid the pole-z,,ro t ypes

ll 1w iir,,, h,'. An ill-zi,r, nol'h filt,,r can boo implenented by ising the

srr i.rr, I ,,f h, i , , r ir:iri-fr' (n I)l"T). in', th,' DI)" can 1,,

r~z:,~ l,., ., ut , k ,f t,:uri ,-I,:,- filt,,r, 1.1', ,ni ii:iv ,':ite" a 1,,ul-,.,,'t ,er
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notch filter by rejecting a selected frequency band. For pole-zero notch filters, a

simpLe design can be had which is based on the structure of adaptive noi"e

canceller. Glover [2.4, 4.2] showed such a structure as a two-pole-two-zero notch

filter centered at the frequency of a reference signal.

When used in frequency-hop adaptive arrays, some important factors of the

filter must be considered. These include transient response, band width, spectrnl

shaping, and feasibility. The data transmission rate, for example, strongly

depends on lhe acquisition time in such a spread spectrum system. The

acquisition time is increased by a slow transient response of the notch filter.

Hence, the transient response of the filter plays an important role in determining

the data transmission rate. The information bandwidth can alo affect the data

transmission rate. Spectral shaping may cause signal distortion and decrease the

signal-to-noise ratio (SNR).

SI

I

t "
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4.2 DFT Notch Filters

In this section, we analyze the frequency response of the DFT notch filter,

then develop its transfer function, and finally discass the limitations of this filter.

Consider the DFT notch filter shown in Fig. 4.1. The input signal feeds into

a tapped-delay-line (TDL) to create an N-element vector consisting of delayed

signal values. The discrete Fourier transform is applied to this vector to generate

N output bins. Only the switch of a selected output bin is open. The rest of the

other switches are closed, and the sum of the N-I remaining DFT output bins

forms the output of the notch filter. Notice that if all the DFT output bins

including the selected one are summed, the filter will have a transfer function of

unity. In other words, if all the DFT output bins are summed together, the

filter's output is the same as the filter's input. This is intuitively clear, because

the sum of all DFT output bins transforms into the first bin of the inverse DFT,

and the first bin of the inverse DFT is exactly the input signal. The filter's

output, therefore, is equal to the filter's input, only if all the switches are closed.

When the switch of a selected bin is open, the filter's transfer function would be
I

unity minus the transfer function from the input to the selected output bin. It is

well knovn that the DET can be viewed as a bank of band-pass filters, and that

the centor frequencies of these filters are uniformly spaced beiween zero an(l the

sampling rate. When this selected frequency band is removed from the output, a

bal-i jt ,or n,)th filter reuJts. h -ie ,l't 'd bin whi.h was ilnt included in

th,' ,Itplt st n. thin, can I, , il,d t,, .-elhct th,. notch's fr,,juenc:v hail.

l t i , input >igral , th,, 11)1 in lir hyI rifg it v r , (11 kV (,.lv - it lin.
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INPUT

DISCRETE FOURIER TRANSFORM

* Figure 4.1. A DFT-based frequency-hop notch filter.
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the mh output bin of the DFT is

N-1

Y7 (n) E x(n -k)Wmk (.1)
k- O

where

W- e-=27-/"V (4.2)

Eqn. (4.1) is a convolution between the input and the filter's impulse response.

Thus, it is convenient to express (-1.1) in terms of the Z-transform of x(n) and

y,,, (n ). X(z) and 1n (s). By taking the Z-transform of (.11), we have

0m _____ -= z-k  Wfink (13
X(:) k=0

Through some simple algebraic manipulation, we can rewrite (4.3) as follows,

H_( _ in = 0, 1,.....--I (-. -1)

Note that (4.4) represents the transfer function of the filter from input to the mth

DFT output bin. Evaluating Hm(Z) with z = e-j' gives the frequency response

of the mth filter. As previously mentioned, this is a band-pass filter with center

frequency w = 2rm/N. The bandwidth of the band-pass filter is

2- (4.5)
.VT

here T is the sampling period. Notice that the band %idth depends on the

viloe of \.. the size of the DFT. The larger the vilue of N, the mnilhr the

hi band.vimlt h. If A:l the transfer func-,iu s in ( ). a are summed, i.e. :l1 the tPitput

-;%itchfs ;ire h,1,,, . thn '.'., vill h ve,
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N-1 -

m=0 k=0

=N (4.6)

Eqn. (4.6) shows that Nvhen all switches of the output bins are closed, the transfer

function of the filter, as shown in Figure -1.1, is nothing but a constant gainl

which can be normalized to be uity. As all the output bins except, the int one

are summed to form the outp)ut, the transfer function of the filter will be

Sz

-- -N'§

When evaluiat ed with ze the filter's frequency response results; in a narrow

band] rejection centered ~t normalized frequency wv = 2-,m/\N. Figure 41.2 is thle

frequency response of a notch filter based on the structure of the DFT. The gain

is iormailized to be unity, and the frequency of the notch for the case Illustrated

is a quarter of tile sampling frequency. For this frequency response, an infinite

null is creaited at the selected notch~ frequency. In addition, the passband ha.s a

ripple response. and this response may introduce signal distortion.

It appears that tis fitlt':r structunre does not result in a perfect notch [ilter.

am',r- -mlra inhofretit 1rm1aclmitatoions of the DI'T Ipl~)iach1..

O)n-, 4 din I>titit o)f Ifrqietlcy Thettn.I fre-quency resolution i-s roughly

th, 4'ima f te in itervalt yr xIwil the :Impleol ik:ia i , av.1dable. A

s 1r1i mit h.t ! I., dle to the efk, g f the [)FT. Implicit Nuiulo\wIig of Ow
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data always occurs when processing with the DFT, and the windowing effect

manifests itself as "leakage" in the spectral domain. In other words, energy in

the main lobe of a spectral response "leaks" into the sidelobes, creating signal

distortion.

I I

I I1

I

I S

e
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4.3 Adaptive Notch Filters 8

Adaptive notch filters can be realized by adaptive noise cancelling

techniques. These techniques have been used for a variety of applications in

speech processing, array processing, and communication systems. The concepts

of adaptive noise cancelling are first described and derived by Widrow et.al. [2.31

and later extended by Glover [4.21. Figure 4.3 shows the structure of a noise

canceller with two adaptive weights. The error criterion minimizes the output

power of he noise canceller. The weight are adjusted by the IMNIS alI,,,rih i.

The primary inpit is assume(] to be any kind of signal. With a sinusoidal

reference input, the adaptive noise canceller sums up the weighted in-phase and

quadrature-phase reference components, and then subtracts the sum from the

primary input. Glover has shown that there is a transfer function from the

primary input to the noise canceller output. This transfer function performs as a

notch filter nulling at the frequency of the reference sinusoid, and it can be

expressed as follows,

H(" -2 cos(u' T) + 1
[1(), ,(4.8)

H = 2 - 2(1-p)cos(a,, T) z + 1-2p

where it is the adaptive algorithm step size, u, is the frequency of the reference

input. and T is the sampling period, Equation ( .8) de -rihes the transfer

function of a second-order notch filter. This notch filter has two zeros on the

unit ,irle :at the frequency of the r,,f,,ren,, sinusid anl t%(o p0,, loc,,',ati, al,n,g

the sane ingl is the 1er<,s but at ai radlius. 1-1. some\ fiat ls, than one. 'lie

ban'lt idth ," th rntelh filtr is
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PRIMARY OANCELUE

INPUT

S0

DELAY

* Figure 4.3. A simple two-weight adaptive noise canceller. -
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B2 2 (4.9)

Notice that the step size i of the LNIS algorithm controls both the radii of the

two poles and the bandwidth of the notch filter. Figure 4.4 shows the frequency

responses of the adaptive noise canceller in Figure 4.3. The reference input is a

sinusoid with frequency w, and unity amplitude. Figure 4.Aa and 4.4b

correspond to the large and the small value of p, respectively. The value of ji

does not affect the notch's frequency. but it does affect the bandwvidth of the

notch. The larger the value of pl. the wider the bandwidth of not h. Notice that

hot h frequency responses have an infinite null at the frequency of reference

,in uSoid. In addition, the passband has a flat response with unity gain. In other

words, the adaptive noise canceller can function as a frequency-controllable notch

filit'r by crntrolling the frequency if the reference input.

\Vhen used in frequency-hop spread spectrum receivers, this form of notch

filter otf,,r-, easy control of bandwidth, an infinite null, and the capability of

adaptively tracking the exact frequency of the reference signal. Figure -.5 shows

a method of implementing a frequency-hop notch filter based on adaptive noise

cancelling. A set of local oscillators are available, and each tunes to the center

frequency of one bin of the frequency-hopped signal. These local oscillators can

be used as the ,inusoidal reference inputs to an adaptive noise canceller a- .)wn

in I'igu re .3. By spqtiencing through the diffrtnt oscillator signal., th, iap(t ivO

,is', ,an,,,lclir forms a frequeoncy-hop nach tilter.

\.- , ,n in I ,,for,. the tran-i.t rsprust' is a c'rucil fa,'nr Ti fi' 'iiv-

hi p .I::I,ii ' urrays. iii'-,liiaiii -analv>i;. thrf )r,'. is ne'>'sarv f,)r >tl IIu,,
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(a) .06

-i 1

0 FREQUENCY

(b) = 04

* 0 FREQUENCY

Figure 4.4. The frequency responses of the adaptive noise

0 canceller -ith different values of step size.
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-- |

I

I IPUT OUTPUT

0 
I

DELAY

LOCAL
OSCILLATOR

Figure 4.5 A detailed structure of the frequency-hop
adaptive notch filter.!I
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the time constant, te,: transient response, etc. The following is a state-space

analysis for the a,-,ive :noise canceller. We define the weight vector as the

state vector, and wil show that the difference equations of the adaptive noise

canceller describe a linear time-invariant system.

Consider a two-weight adaptive noise canceller in Figure 1.3, where the

primary in~put is denoted dk and the reference input is a pure sinusoid. The

canceller output ( is as follows,

Ill: .-r - A

/: = t:(l) o h.kT) + th'1(k) .sin(wkT) (-.10)

'it' , It,:i.i irelfl -1ui re (LNI ) & I-orithn is given by

I11 ( k+ I) VR~k -tfk ko wkT

tt(Lk-' ) 1t'(,. 2p Vk sin) wkT k Tl)

%khero it 1-p :acon-.atit ,tep size. luL-tituting of (- 10) into I-. It), yIl ,

t t ) /,- tI - "-' , o s -( w kT ) -2 1 , c o s ( ,k T ) .d n ( , a'l, T ) j t ) L .)j
11(k-r 1)l [-2lzcos( u-kT).in (iukT) 1 - 21,in2( kT) It),' J

+ 2 d (1 12)
,sin ?i 'k T )

k Tl /:,/"f ) tl/ !,

. tl,-, t11,1 It 12 : 4.tct: , :sn1t I 1.12,) i-,u :1 u Mlltpult , :1 wni fl ' \\

!i,:i- -m - i 7orr :1 111 ili n . r i rij~r i~w it~ J i w :d 1 :\,
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noise canceller with input dk and output (k. Although the transition matrix in

(4.12) is a function of the timing index k, it will be shown that the adaptive noise

canceller is a linear and time-invariant system. Since the transition matrix is

symmetric, it can be decomposed into the form A A A - ', where

[cos(wkT) -sin(wkT)1
A(k) = (4.14)

sin(wkT) cos(wkT)

and

. = ['i ] (4.15)4 0 1

The matrix A is a diagonal matrix, and A is a rotation matrix with the following

properties.

.4(k) = Rk

[cos(wT) -sin(wT) pR (4.16)
sin(wT) cos(wT)

A-'(k) A T (k) = A(-k)
4

By the sampling theorem, the sampling frequency must be at least twice the

cutoff frequency of the sampled signal. This implies that

0 < w T < zr (4.17)

Premultiplyin (1. 12) by .4-1(k), we 5aVe



A-'(k) W(k+ 1) A A-'(k) IV(k) + 9y dk ( j (4.18)

Define the weight vectors W(k), V(k) as the following,

~ IVR (k)1
W(k) kIt"(k) ..

V(. A.-1(k -. (k).1

then (1. 12) and (4.1.3) can be rewritt en as
i

'(k+ 1) - F.V(k) + G.dk

Ek H. V(k) + dk (4.20)

W(k) A (k-). V(k)

where

F I

T . -I
G .2 1 0V (4.21)

H r -1 0 1i

Notice that R, defined in (4.16), is a constant rotation matrix and its element

values depend only on the relative sampling frequency wT. Since the matrices

F, G, and H are all constant, the system described by (.1.20) is a linear time-

invariant system. This is true for the adaptive noise canceller only when the

reference inputt is a pure sinusoidal signal.

The complete reponse of the system consists of both the zero-,ta(e resp)nse

and the zero-input rsporne. By settirng initial wvghits IW(0) zero, we can

= . -. ° • , . "
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directly solve the zero-state response, which is

k-I
V(k) = y F - ' G dn  (4.22)

n=0

By zeroing the primary input dk, we may expand (4.20) for zero-input response.

This means that,

V(P) V(O) (4.23)

Thus, the complete response will be the superposition of zero-input response and

zero-state response, i.e.,

k-1

V(k) - Fk V(0) + E Fk- G dn
n=O

By (4.19) and (4.20), we can explicitly express the complete response in closed

form as

WI(k) = A(k-1) V(k) ,

k-1-
- R-' Fk R W(0) + Rk 1i FT G dn (4.24)

n-0

k = H . W(k) + dk , (4.25)

where F, G, H, and R are defined in (4.16) and (4.21).

The transition matrix F plays an important role in the transient analysis of

the adaptive noise ?anceller. Its eigenvalues determine the character of the

transient response. Through the eigenvalues, the stability and the time con-tant

of the respone can be investigated. According to (1.21), the transition matrix F

is

'. -..
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F A -

[- 2 p ~ cos(wT) -sin(wT)

-s i L-siwT cos(wT)J

The eigenvalues of F shall satisfv the following equation,

X2- 2(1-p)cos(u'T) X + 1-2p = 0 .(1.27)

Notice that these eigenvalues of F are the same as the poles of the filter's

transfer function in (4.8). Solving (4.27) for the eigenvalues, wve have

=(1-p)cos (u T) ± V (1-pu) 2cos ( wT) -(1-2p) . (-128)

There are two possibilities for the eigenvalues. One is the real case, and the

other is the complex case. For the case of real eigenvalues, the term inside thle

square root must be greater than or equal to zero. This implies that

or

sin (wT)
~' 1 + sin(wT) (.9

* For stability, the absolute values of both eigenvalues in (4.28) must be less than7

one so that transients will die out. This implies that-.

1- i 112 > 0 ,(41.30)

071
or (,q'ivalently

0%
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> 0]

where •)>

a = 1-(1-p)cos 2(wT)
I

= cos(wT) / (1-p) 2Cos 2(wT) - (1-2,u)

As long as (4.17) and (4.29) hold, we can prove that
I

( +3) > 0

Thus. eqn. (4.30) implies that p must be less than one for the stability

requirement. Combining the stability requirement and the real eigenvalue

criterion in (4.29), we will have

sin wT) < . . (4.31)
1 + sin(wT) -

In other words, if p is in the region of (4.31), the adaptive noise canceller will be

stable with an overdamped transient response of the adaptive weights. p

For the case of complex conjugate eigenvalues, the term inside the square

root in (4.28) should be less than zero. This implies that

sin(wT)
< 1 + sin(wT) (4.32)

For stability, the modulus of the eigenvalues should be less than one to result in

a stable filter. In other words,

[ iX.I= l-21 2 K.  
. (-.33)

From (1.32) and (1.33), the value of p for a stable adaptive noise canceller with

underdamped transients should be

I
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sin(wT) 43-:

0 < < 1 + sin(wT) (4.34)

Combining (4.31) and (4.34) yields a stable range of the step size

0 < U < 1 (4.35)

Figure 4.6 shows the stable region of p versus the relative frequency wT. The

region is partitioned into two subregions by the curve

sin( uT)
I I + sin(wT)

* Region I corresponds to the overdamped transient response of the set of weights,

whereas region I the underdamped transient response.

Now we can relate the state-space analysis of the adaptive noise canceller

S.. with the property of the adaptive notch filter. Notice that for a second-order

notch filter, the poles are complex conjugates. These complex poles can be

* controlled by selecting p in region II, which corresponds to an underdamped

transient response.

Let the time constant of the adaptive notch filter be denoted as r.

Considering the eigenvalues in (4.33), we should have

IX I1 = I -2p = e-

or

r -- (.1.37)
In 1 I- 21

If p i very small, the time constant will be

. .the t
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REGION I

= sin wT
1 + sin wiT

WT 0=OT WT rT

4 '72

Figure 4.6 A stable region of the step size for the adaptive
4 notch filter.
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_- 1 (4.38)

Notice that the time constant is a function of u only, and that it is inversely

proportional to the bandwidth of the notch as in (4.8). In other words, the

smaller the value of ji, the longer the transient response and the narrower the--

notch.

I -

* I.] .• •
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4.4 Comparison and Discussion

In comparing the performance of the two suggested frequency-hop notch

filters, several issues must be considered. These include transient performance,

notch bandwidth, spectral shaping, and flexibility.

In frequency-hop spread spectrum adaptive arrays, high data transmission

rate is desired. The data transmission rate, however, is closely related to the

transient response of the frequency-hop notch filter. For each frequency hop, if

the transient response dies out very slowly, the required acquisition time will be

longer. Thus. long transient response slows down the data transmission rate.

Suppose the input to the notch filter consists of a frequency-hop signal and

white noise,

d = a cos(w'T) + nk

The frequency w is a function of time, and is randomly hopping. Consider the

moment that the signal and the filter's notch are hopping into a new frequency

band. Since the DFT notch filter is an FIR filter, the residuals of the last

frequency hop will still remain in the tapped-delay-line of the filter. These

residuals will then appear at the output of the notch filter until they are shifted

out of the tapped-delay-line. In other words, the transient response will

completely die out after a number of iterations equal to the length of the

tapped-,lelay-line.

The transi,.nt performance of the adaptive notch filtcr depnds on its

A I , or 1ol) s. As m,,nti nedl in S,tion 1.1. flo: adaptiv,, nolth liltr is an

I 1 flter and lihe time constant 'a: !)e a1 rnia,iio of its d(, i : p,1':,,

-..I_ -. . -. ' : . :. . - -
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According to (4.37), the time constant is a function of p, which is

- 2 1 ( . 7
ln1- l2P P

The larger the time constant, the longer the transient response. Figure -1.7 shows

the transient responses for various notch filters. The signal is hopping from one
frequency bin to another, and the frequency-hop notch filter is notching

accordingly. Figure 4.7a corresponds to a DFT notch filter. Since it is an all-

zero filter, the transient response completely dies out after N cycles, where N is

the order of the filter. Figure 4.7b and 4.7c correspond to adaptive notch filters l

with different values of it. The larger the value of It, the faster the transient

response dies out. The value of t, of course, should be in the stable region.

The bandwidth of the notch filter should be small, if high frequency

resolution is desired. The frequency resolution of the DFT is proportional to the

number of frequency bins. The number of frequency bins is the same as the

number of taps in the tapped-delay-line. This implies that the DFT notch filter

must have a large number of taps in order to have a small bandwidth. This large

number of taps, however, will cause a long transient response. Explicitly, the

bandwidth and the time constant of the DFT notch filter are

N"DFT 2 NT T  N N

II
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The andwdthand the time constant of the adaptive notch filter, accord'jgt

(4.9) and (4.3S), are

B adaptive _ 2 it adaptve

To have a small bandwidth, It must be small. This small value of it lioever

myresult in a slow speed of transient performance . Notice that high frequeno'lcV

resolution will cause lon- transient performance no matter which fihkcr 1., nis'

Nonetheless. the adaptive notching may be more flexible than the DI7T nri

For adaptive notchiig. the step size It can be easily adjusted to control the

bandwidth or the transient performance. For DFT notching, to adjust thle

lbandv.i Iti or the transient performance means to change thle length (J Ilih,

tapped-delay-lhne and the length of DFT.

Another comparison concerns the frequency response outside the notch, i.e.

the spectral <iapingi Whien pr, cessing with the DET, implicit data w~indowinga

alw~ays occurs. This time-domain wvindowilng, introduces the passband leakage

effect. This inherent leakag-e effect then introduces distortion for the pas'sband

* signals. WVith the adaptive notch filter, the frequency response outside the notch

band is fairly smooth and flat. Thus. passband distortion %vill be negligible. In

this, respect. the adaptive notching is clearly superior to the DET notching.

In concisin, for both the aidaptive notch filter and thle DFT notch filter, N%(,

Cian 0:1>il l' thelc th freqo c yif- by ont-oln til row nn froIkn,%:1

* ~the >.ithe!wl o'l put bin. rsetvl.Data lramisnuil siori rate ald di -trti n

1-N -I. !e;.vr. LrmV ve-r crum ii In fzAee mpaat'P:irm~. ll'lz

a ~ienotchilng pe rformsl' be(ti-r thit l)FT ni!hilig, hic i .j I
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filter has a flatter passband response than the DFT notch filter. In addition, it, is

easier to control the notch bandwidth and the time constant when using the

adaptive notch filter.

I

I|

-"

" - . ..."-S ' ° . :. - - . . .- . , " '. ,- . " -

6

"-'6- . . ... . - ". _ _ _ :. . ' £ _ . 2 .. .
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V. PARALLEL SPATIAL SMOOTHING

In Chapter III we applied the frequency-hop approach to eliminate signal
I

cancellation in adaptive arrays. This approach is very effective when the desired

signal is known to be a frequency-hop spread spectrum signal. In some

applications the desired signal is unknown, and the available a priori information p

is the direction of the desired signal. Spatial smoothing techniques can be

applied wit h adaptive arrays in these situations. In Chapter V. w, pre,,nt a

method based on a spatial smoothing technique to combat signal cancellation.

Our only assumption is that the direction of the desired signal is known. We

emphasize the Frost adaptive beamformer. Basically, this algorithm has parallel

structure and requires the same computation power as any conventional

beamformer. Furthermore, when the adaptive processor reaches the minimum of

the performance surface, the total system output will be a maximum-likelihood

estimate of the desired signal in a spatial averaging sense.

This chapter is organized in four sections: Section 5.1 gives a brief

introduction and reviews previous work on spatial smoothing techniques. Section

5.2 presents a parallel spatial processing algorithm as a cure for signal

cancellation. Section 5.3 analyzes the proposed algorithm. Finally, Section 5.4

compares the experimental results of both the proposed algorithm and the

previous methods.

- . ."

. . -
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5.1 Introduction

As previously shown in Chapter I, signal cancellation phenomena exist in

man" conventional adaptive arrays. These effects can result in a signal loss in

the case of narrow-band signals, or significant signal distortion in the case of

wide-band signals.

Duvall proposed a composite beamformer to prevent signal cancellation

when the signal direction is known. This beamformer however requires identical

arrav elements to perform tie inter-olement subtraction which rnmnves the

d(esired signal from the adaptive processor. Since identical array elements

sometimes are not available, the spatial smoothing techniques here are used as an

alternative to combat signal cancellation.

Previous work using spatial smoothing techniques to combat signal

cancellation is due to Widrow [5.11 and Shan [1.201. These methods are briefly

discussed below.

5.1.1 Spatial Dither Algorithms

The spatial dither algorithm was first proposed to prevent signal cancellation

by Professor Widrow at Stanford University [5.1]. This algorithm applies locally

controlled modulation to jammers arriving at angles other than the look

direction. while leaving the signal from the look direction ,nmodulated and

tinli.,torted. The effvct is to cause jammrs arriving , n" the look direction to be

spr,:id ,pectrally. thereby reducing jamnr pom t 'nitv.

T,) iiahit, the pati l dit,,, r al ,i'ir \\ilrw .\pl:li., . ':ll.,

"0"
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"3/4-in plywood" approach as shown in Figure 5.1. The elements of an adaptive

array are attached to a piece of plywood that provides a rigid support, so that

the entire array can be moved mechanically. The idea of this spatial dither

algorithm is to randomly dither in directions which are orthogonal to the look

direction. Far-field emanations arriving from the look direction will be

undistorted by the mechanical motion, while emissions from sources off the look

direction will be randomly modulated. Through this random modulation on tile

jammer, the array can break up the signal/jammer correlation.

Although the mechanical motion is somewhat not compatible with electronic

processing, the spatial dither algorithm provides a profound basis for adaptive

arrays to combat signal cancellation.

5.1.2 Spatial Smoothing Algorithm.

Recently Shan proposed another spatial smoothing approach to eliminate

signal cancellation. He first showed that in a coherent signaling environment the

sample covariance matrix has some zero eigenvalues. Minimization of mean

0 square error with respect to the weights will steer the weight vector to align with

an eigenvector corresponding to a zero eigenvalue. The output of the

beamformer lence ralls down to zero. With his spatial smoothing method, the

array will be able to restore full rank to the sample covariance matrix.

Figure 5.2 shows a picture of Shan's spatial sni othing algorit hin. Aixiliary

antenna elements are used, and all the elements are partitioned into several

grtips as sho vn in Figure 5.2. Note iat all the groups for a given srialpshot iii
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SIGNAL

JAMMER

ARRAY
ELEMENTS

SPATIAL
PLYWOO0D DITHER

ADAPTIVE

ARRAY PROCESSOR

ARRAY OUTPUT

Figure 5.1. Widrow's mechanical spatial dither algorithm

("3/4-inch plywood"). -
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SIGNALJAMMER

ARRAY
ELEMENTS

(2) 1

(3)

ADAPTIVE

ARRAY PROCESSOR

ARRAY OUTPUT

Figure 5.2. Shan's spatial smoothing algorithm.
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time still contain the same signal, but the jammers in different groups are in

different phase relations. The algorithm then runs these groups one by one into

the adaptive array processor. Different running sequences may result in difTerent

spatial smoothings, but the effect in breaking up the signal-janimer correlation is

still the same.

This method is found effective in applications to direction finding and

adaptive beamforming. For many signal cancellation problems, hoever, the

"quality" of the array output rather than its output power is of great eone,,rn.

4 The recovered signal however is still sensitive to the adaptation rate, and another

form of signal distortion can result from using a high adaptation rate. For each

snapshot, this method requires a considerable amount of computation to achieve

spatial smoothing.

4I

4I

4
e !

0-

I

: -:-. . -. - ..' -* - ..I. "• ": . . .
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5.2 Parallel Spatial Processing Algorithm

In this section we present an approach called the "parallel spatial processing

algorithm" to combat signal cancellation. In this algorithm, a number of sub-

beamformers having the same structures as above are used. These sub-

beamformers are arranged in a parallel way. Due to its parallel structure, the

algorithm will require the same computation power for each snapshot as any

conventional adaptive beamformer.

Figure 5.3 illustrates a general block diagram of the algorithm. It consists of

a linear array with L equal-distance elements. These L elements are partitioned

into N groups. where N is the number of sub-beamformers. Each sub-

beamformner has .11 input elements. The input elements of adjacent sub-

beaniformers could be partially overlapping. If the adjacent sub-beamformers

have overlapping input elements, every sub-beamformer should do the

overlapping in the same way. This implies that the total number of elements in

the linear array should be less than or equal to M-N. Since every sub-

beamformer has the same structure, each one can share the same set of weights.

The parallel spatial processing algorithm is given as follows: For the first

snapshot, we use the first sub-beamformer to update the weights and then copy

the wveights into the rest of the sub-beamformers. For the second snapshot, N e

use the second sub-beamformer to update the weights and then copy the weights

into the rest of the sub-beanffurnwrs. So the daptanti process is seplu-ntialv

propagating one by one along the sib-b:ifornurs. kftcr the adaplat ion reacli,

the in>t sub-eamforiner, it restarts fron the tirst one. .lean hile. fr vach

0 
• "
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snapshot, every sub-beamformer uses the same set of weights to yield its own

output. The system output is then generated by averaging the various delayed

outputs of all these sub-beamformers.

Basically, this shares common merits with Shan's spatial smoothing

algorithm. The weight propagation from one sub-beamformer to another will

incorporate spatial smoothing as well as time averaging in the sample covariance

matrix. Thus. the rank of the signal space would be restored when coherent

situations take place. \ith the parallel structure, the algorithm also providcis a

better estimate of the desi ,! signal.

Analysis in the next section will show that the algorithm results in a

maximum likelihood estimate of the desired signal in a spatial averaging sense.

In addition. the algorithm only takes one adaptation to generate one system data

output. This contrast to N adaptations in Shan's method. As the name of the

algorithm implies, the set of weights is spatially propagated and updated along

the sub-beamformers, and the received signals are processed in parallel to

produce the system output.
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5.3 Analysis

In this section an example with N Frost sub-beamformers is analyzed to give

a general insight into the proposed algorithm.

Each sub-beamformer has I! input elements. The adjacent sub-

beamformers have Mt-1 overlapping elements. This means, there are total

M+ V-I elements in the linear array. Suppose the desired signal and the

jammer are impinging on the array; the signal is from the look direction and the

jammer is from an off-look direction. Since the elements of the linear array are

equally spaced, each element receives S

X,(k) .- 4 eIkT + BejwkT+ io + (m-n1)wA m = 1, 2, ,1+N-I (5.1)

Denote the signal vector received at the nrh Frost sub-beamformer by 5

Z,(k) . [ . (k--n+ 1) Xm+ (k-n+ 1) .. X+ lI(k-n + 1) T (5.2)

where m is the labelling number of the first element of the nt' sub-beamformer. -

Mathematically, the algorithm can be expressed as the following,

y,(k) = WT(k) Z.(k)

IV(k+ 1) = P [IV(k) + py (k)Z (k)] + F , (5.3)

where

k = the discrete time index -
n = Mod(k,N)+ I

y (k) = the output of the ntA Frost sub-beamformer

Z,(k) = the complex conjugate of Z,(k)

P. F = the constant vectors of the Frost algorithm

The s stern output is generated by averaging thli various delayed outpmls of ench
5-•
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of the sub-beamformers and is given by

y(k) - ( Yv(k) + y'v-(k-1) + + y 1(k-N+ 1)) (5.4)

The linear constraints in the weights is expressed as the following,

N
Sti-(k) = 1 for any k (5.5)

i=1

It is easy to find from (5.2)-(5.3) that the output of each sub-beamformer is

Y (") = (k)-\; -(k-a 1) n = 1. 2, ,.V . 5.t)

For the k+ n-1 t time instant, one may have

y (k+ n-1) = tV;(k+ n-I).j+. -(k) n 1, 2, N . (5.7)

The overall system output y (k+ N-I) is

yk+ N-1)- NtY1 (k) + y 2(k+ 1) + + y N(k+ N-1)1

1N y- N , y(k+ n-1) (5.8)

n=1

Substituting (5.1), and (5.7) into (5.8), one has

T N Af

y(k+ N-1) = AeiwkT + Beiwkr+ - y I W (k+ n-l)ei('+. _2)A
N n=1 i=1

Ae + Be E Q(n+ k) ci(n- ')w ' (5.Oa)

* .11

Nq

N% he¢_re

o(n +, ' = W t (k+ n() - ' 5. 0 1))

N rtce that (5.0) can be a quality ne, uire ()f the system otput . Accorlr tI)

- . . - , .• . -. ,



tis *euto.the system output contains the desired signal plus a coherent

jammer which is multiplied by -spatial averaging term. This spatial averaging

term may determine whether the whole adaptive beamformer could recover the

desired sigrnal or not.

Another interesting- thing, is that the weights are modulated by the spatial

frequency eV)Aas shown in (5.9b). This modulated term ok(n + k) shown in

(5.9b) is a function of the time index k. As the adaptive process reacs the

minimum of the performnance surface, it is very likely that

WV(k-' n-1) I V(k-i %'-1) n =1. 2. 1-

Thus, it is easy to obtain the following

y(k± 'N-fl = .4e),IT

+ Bejukt + i oQ(k + N) E ~ e 1 ) ] (5.10)

There are two factors in (5.10) which can modify the jammer. The first factor is

criterion and the linear constraint. The second term is given as

1n=1

which is the summation of V uniformly-spaced terms on the unit circle. Notice

that this resijlt-; in a very small value, close to zero, and it also asymp~tot ically

apjproachvs zero as N goos to infninty. \\hfen thre a(Lilt, (1e :ro11s e.he steadv

state, the cr~hf-roiit jirniing effect wIll be -7reat 1y re'hI1(edl Lv such a m)dlk(at 1Q11.

Th'-rnfa ro. if :I Iar-e rmlber rf urb-1wf:irnrfurrn(ers :ire s it IS eto 0) ccl
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lim y(k+ N-i) = Ae jwkT (5.11)

If the desired signal is stationary, the expected value of the system output will be

a minimum-variance estimate of the signal. Capon et.al. [1.51 showed that a

minimum-variance estimate is equivalent to the maximun-likelihood estimate.

Since the spatial summation factor asymptotically approachs zero, the system

output hence is a maximum-lik,_elihod estimate of the desir,..d signal in a spat Ill

averagin7 sense. To make the spatial summation factor close to zero. the Tmbor

Of sVfl-,:,m' rs. shoull be larze enough so that the terms ea', ' )?'  spaIn

the unit ir~l,. This implies that if the incident angle of the jaminmer fro m

broadside is very small, then a largo nuimber of sub-beamformers are reluir,(l.

Finally. the signal estimate appears at the system output with a delay of N- 3

sampling priods-.

Although the analysis is based on the Frost linearly constrained beamformer,

any other known adaptive beamformer can be used as the sub-beamformer of the

parallel spatial processing algorithm. The spatial averaging effect on the jammer

from an off-look direction can still be achieved.

• : i_'. , "' "
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5.4 Simulation Results

Experiments were conducted for the parallel spatial processing algorithm.

The structure in Figure 5.3 with four Frost sub-beamformers was simulated in a

coherent signaling environment. Each sub-beamformer had three input elements.

The adjacent sub-beamformers had two overlapping elements. In other words,

the linear array made a total of six elements. Each element was assumed omni-

directional, and the inter-element distance was half wave-length. The ambient

white noise was assumed negligible. The constraint was set up to be unit gain

and zero phase over the frequency band from zero to half the sampling rate in

the desired direction. The initial quiescent beam pattern of the proposed scheme

is shown in Figure 5.4. In this quiescent beam pattern, some inherent nulls exist

in the off-look direction, and sometimes these nulls are referred to as grating

nulls. The constraints in the look direction were still preserved.

Now suppose a desired sinusoidal signal arrived from the look direction, and

a coherent jammer arrived 45 * off the look direction. Both the signal and the

jammer had equal power intensity of 1. Figure 5.5 shows a beam pattern of the
I!

proposed adaptive beamformer when the adaptation process converged. A sharp

null with a depth of nearly -70 db was formed in the incoming direction of the

* jammer. The linear constraint in the look direction was still preserved at unity.

The beam pattern resulted as dv<! red. We leave the output to the last

experiment.

The next experiment was similar to the first ne ex,'ept that the desired

signal now was a wide-band signal an(l lie jammr was stil! a siluSOiuld at the
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*Figure 5.4. A quiescent beam pattern of the proposed scheme

using the "parallel spatial processing algorithm."



119-

S -

JJ
" 10 dB""

-20

-50

-80 -50 -20 10
dB

Figure 5.5. A converged beam pattern of the proposed scheme

using the "parallel spatial processing algorithm."
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center frequency of the signal band. Figure 5.6a shows the power spectrum of

the desired signal. Usually, the output spectrum of the Frost beamformer was as

shown in Figure 5.6b, where signal cancellation occurred in the jamming

frequency band. In contrast, the signal-cancellation-free output spectrum for the

parallel processing structure is as shown in Figure 5.6c. One can easily see that

the original signal spectrum was recovered without any signal cancellation effect.

Figure 5.7 shows the corresponding time waveforms of Figure 5.6. The proposed

scheme obviously resulted in a better replica of the desired signal than the

conventional Frost beamformer. Note that the output of this parallel spatial

processing algorithm was delayed for several sampling periods in contrast to the

desired signal. Besides, the transient response of the adaptive process died out

after about 60 adaptations.

The final experiment compared the output qualities for both the proposed

method and Shan's spatial smoothing method. The desired signal, shown in

Figure 5.8a, was set to be of unit amplitude. A strong, coherent jammer arrived

off the look direction. Both methods were tested by using the same Frost sub-

beamformers running at a high adaptation rate. The beamformer output of

Shan's spatial smoothing method is shown in Figure 5.8b, and the output of the

proposed metlhod is shown in Figure 3.8c. Apparently, Shan's method introduced

some amplitude and phase distortions. For the proposed method, the desired

signal was recovred without any di-tortion, but with a delay of several sampl in;

* periods.

S f " "..,"
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5.4.1 Conclusions

The "parallel spatial processing" algorithm for adaptive arrays was proposed

to combat signal cancellation effects in coherent jamming environments. The

effectiveness of this algorithm is verified by several computer simulations. The

algorithm requires the same computation power as conventional adaptive arrays,

although it also requires additional array sensing elements. Analysis shows that

the system output results in a maximum-likelihood estimate of the desired signal

in a spatial averaing sense.

0

ai
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APPENDIX A

A COMPLEX ALGORITHM FOR
LINEARLY CONSTRAINED ADAPTIVE ARRAYS

0

A.1 Introduction

The so-called "Constrained LNIS" algorithm, a simple stochastic gradient

descent algorithm with a linear constraint on the adaptive weights has been

applied to a variety of problems in geoscience, seismology, and antenna arrvi,

[A.1-A.-l. Algorithms of this type have been devised by Frost [1.10] for

implementation with real signals. Following Frost, the adaptive array processor

of Figure A.1 has N tapped-delay-lines and L taps per TDL for a total of NL

adjustable weights. The NL-dimensional sample vector X at the time of the At

adaptation is

X(k) [xl(k\) X(kA.) ... xNL(kA)] r  (A. 1)

The NL-dimensional weight vector IV is

V A I w W .' M,,VL]T (A.2)

The output of the array at the time of the kth adaptation is

,(k) X VX(k) = X(k) TIV (A.3)

and the expected output power of the array is

E[iy2 (I -- E[IV T.V(k).\(k)T t 1  = TI?., .. ) 

1 here

.1

• . , - ..: ,:', _: , . '.,~. " " ' ~ t i im',...
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Rz E[X(k)X(k)T ]  (A.5)

is positive definite.

The constraint for desired frequency response characteristic of the target

signal is defined in such a way that the linear combinations of the weights on the

, vertical column of taps sums to a constant number fi as shown in Figure

A.2. The requirement is thus given by

CT = Ttj = 1,2, L (A.U)

wOhere the XL-dimensional vector C has the form '
C,. 0 o... 1...1 o...o 0 T j 1 , 2, .L (A.7)

(j-I)N N (L-j)N

Furthermore. we define

C A [C=.. C,. C, l ( S)

f f f j fL] T  (A.9)

The constraints (A.6) are now rewritten as

CT V f (A.10) .

With (A.4) and (A.10), the optimal weight vector Vop may be obtained by

4 minimizing WTRZ IV over W subject to the constraints C T IV, = f

For deterministic gradients, assuming that CT W(k+ 1) = f. the

constrained L.IS algorithm, which has been derived in [1.10]. may be tvxpressel

as

I

- ,I . " _ , o . .. .-. . . ' .. " " -: " " " '
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Figure A.2. The equivalent linear constraint filter.
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WV(k+i1) = W(k) - y7 IvH(1V(k))

= YV(k) - p4Rz2 IV(k) + CX(k)

P P[ V(k-)-LR., lV(k)] + F ,(A. 11)

where

H(IV) A ±IVTRZ IV + \T(CT;V-f)

p HjI_ C(CTC)-ICT

F 1 CCT C) 1 1f

p aconstant convergence factor .(A 12)

For stochastic gradients using real data, substituting R?2, with XV(k)Aik)T

gives the constrained LNIS algorithim as

I V(0) =F

£W~k+ 1) =PjW-(k)-pyk)Xk)i + F .(A. 13)

A.2 Derivation of Complex Algorithm

Some applications of adaptive arrays require phase delay for the constrained

phase shift for a narrow-band signal at an intermediate frequency. The complex

constrained LMS algorithm therefore must be capable of adapting the real and

imaginary parts of WV simultaneously, minimizing in so me sense both R, Iy(k)} p

and Jm{(Y(k)l. The complex sample vector X(k) and the complex weighlt vector

It' are gi%-en by

Xik) 1. ,(k) + i 1 k .. I
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I V W R + 1i1 (A. 15)

where the subscriptions R and I denote the real part and imaginary part.

respectively. The complex output is correspondingly given by

y(k) Y R(k) + iy;(k)

- X(k-)T = VTX(k) (A. 6

, According to (A.16) the expected output power of the array is

ElI yvk) I1 = Ejj-\lV(k)X(k)TI - WTT? W I.17

- here

y y(k)l- = y2 (k) + y-2(k)
_ E[X(.)X(k-)TJ (.s)

Note that for complex signal cases the covariance matrix 1?R, is Iermitian and

positive definite. Also the complex constraints are given by

CT IV - f (A.i9)

where

f = fR + ifl
C = same as (A. 8)

The problem of finding the optimum complex weight vector It' is now

formulated as

minimize I r - -

0

------------ ~~W
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subject to CTW = f 

Note that all multiplies and adds are complex. For simplicity, we may form

the cost function H( W) by introducing an L-dimensional complex vector of

Lagrange multipliers X XR + iX1 such that

H(IV) = 1 WTR lV+ XR(CTIIn fR)+ \T(CT 11_.f )

2 R I (IV - V1 ~ T~~ 1

T=, It

2 [, + Zvjj RZ,[tR_ iLl~J]

+ Xr(CT I R - fR) + XI(C'T - f1). A.20)

For gradient descent technique [A.3-A.6], we have

Vw ( I V) ) + ivt-( IV) (A.21)

where the gradients of I-( IV) with respect to the real components and the

imaginary components of the weight vector, respectively, are as follows

,- [R,, IR + Rx R + iRT I V iR It + CXR

=- 1 [RW + RTIV] + CXR (A.22)

Vw,H(IV) = I V [iR,,IR _ iRTI VR + RzIV, + RTIt ] + CX12 Z. Z

2 i [Rr z- Rz CX (A.2 3)

Since Rz i Ilermitian, R T = fz. For a constant it, the constrained L.IS

algorithm for the (k+ 1)t' adaptation complex weight vector is

l'(k+ 1) = IV(k) - iW7 t(I 11( '(k))

= I -(k) i,[F,, Wv(k) + c'X(k)] (A.2 1)

.-. . , .. . . . .. ... . ..:_. . _ .:. .. . .. .. .. - - . .. : . .. . . ., .., _,-, . -:. .,
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Solving for the Lagrange multipliers vector X(k) by equating

f -C r V(k+ 1), and substituting into Eq. (A.24), we get

W(k+ 1) = P[W(k)-pR,, W(k)] + F (A.25)

where

P = I- C(CTC-ICT

F = C(CTC)-1

Equation (A.25) is a deterministic gradient descent algorithm requiring a

priori information of the statistics of the signals and noises. For a stochastic

gradient descent technique, a priori information is neither available nor

necessary. Substituting R,. for X(k).V(k)T results in the complex constrained

L.IS algorithm

IV(O) = F

W(k+ 1) = P[W(k)-py(k)(k)] + F (A.26)

*

0 " : '. , : : ' - . . " i . : - . " . . - " ' - . . ' - : : -' : :
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